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EVALUATION

~—p

RADC is currently building a computer emulation facility to assist
in evaluation of hardware/software/firmware tradeoffs necessary in
the development of system architectures under TPO 5, Thrust 5.1.
<:As part of this effort, RADC has purchased a QM-1 microprogrammable
computer which is designed to run computer emulations, and to get
access to SMITE which is a Higher Order Language for describing
computer architecture emulations and a compiler which produces code
to emulate said architectures on the QM-1 computer. This effort
also studied the possibility of being able to extend SMITE to make

it a more useful hardware description language._  The results of this

study are being incorporated into an Advanced SMITE which is being
written in a subset of PL-1 to be run on the MULTICS operating
system at RADC.

5;;u4£Z4Q;1f4(52;7709t1ﬁﬁf¢’
FREDERICK A. NORMAND Ny
Project Engineer
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Preface

| This report, CDRL A003, is the final technical report of contract
F30602-77-C-0089, which addressed the the following technical items:

1. Installation of the SMITE compiler.

\ 2. Installation of the SMITE Applications Support Software
i (SASS).

-3. Training of RADC personnel in the use of the SMITE language.

4. Analysis of the use of extensibility features within SMITE
including use of technology derived from the Alphard language.

The SMITE compiler was installed on the CDC-6000 system at the Air
Force Weapons Laboratory (AFWL), Kirtland Air Force Base, New
Mexico. This allows access to the compiler by RADC personnel through
the use of the ARPANET. SASS was installed on the Nanodata QM-1 at
the Rome Air Development Center (RADC), Rome, New York to support
RADC use of emulations produced by the compiler. The test plan and
procedures used for both of these installations are contained in
CDRL AQO4, SMITE INSTALLATION & ANALYSIS - TEST PLAN AND PROCEDURES,
of this contract.

Training of RADC personnel was accomplished in a one week course at
RADC during the contract. As part of the training preparation CDRL
AOO05, SMITE INSTALLATION & ANALYSIS - SMITE TRAINING MANUAL, was
published.

This report presents the findings of the extensibility analysis.
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1.0 Introduction

.1 Summary

This report presents the findings and conclusions of research and
studies into the use of extensible features within computer
description language technology. Readers of this report are
assumed familiar with SMITE computer description language [1] and
the Nanodata QM-1 Computer [2].

The value of SMITE as a computer description language and
emulation development tool can be significantly enhanced by
providing extensibility features within the language. With
addition of extensibility, non-standard architectures can be
described and emulated. Also, the descriptions of existing
architectures for which SMITE is not quite suited (such as
various forms of arithmetic other than 2's complement) will be
enhanced. Extensibility will also allow SMITE to be used for
architectures not yet envisioned.

These studies address two areas of extensibility:

1. Downward extensibility which gives the user access to the
Multi language and QM-1 system functions.

2. Upward extensibility which allows the user to modify the
existing language to define a new language that corresponds to
his specific needs.

The downward extensibility features studied provide the ability
to produce more efficient emulations by allowing the user to
force into the microcode level those functions which are
performed repeatedly or are not easily described in SMITE. These
features allow the user to code directly in MULTI and also allow
the ability to define new MULTI instructions the compiler did not
initially recognize.

The upward extensibility features studied allow the user to
"tailor" the language to his own needs. Using this ability the
user can add new language constructs to aid in the representation
of the problem at hand. This mechanism will also provide the
user with more refined methods of abstraction than current SMITE
allows. Complete and modularized descriptions must be composed
of several levels of complexity, such as functional, behavioral,
and structural. To provide these levels it is necessary to have a
high degree of abstractive ability in a language.
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This report is divided into several sections containing the
following information:

1. Overview and summary of the extensibility features to be
added to SMITE as determined by this study (Section 2.0).

2. Working notes produced as the studies of the various
extensibility areas progressed. These are not formal
descriptions of the fe¢atures but merely a compilation of some
of the notes produced during the study to give an indication
of the thought processes involved. (Sections 1.0, 2.0, and
3.0 of Appendix A, corresponding to the areas of the overall
extensibility mechanism, syntax macros, and direct code,
respectively).

3. The semantics and syntax of the extensible features to
actually be added to the SMITE language (section 3.0).

4, SMITE Compiler Implementation notes produced during the
study (Section 4.0).

5. SASS requirement notes produced during the study (Section
5«01}

6. Conclusions (Section 6.0).

1.2 References

1. TRW Defense and Space Systems Group, SMITE Reference Manual,
RADC-TR-77-364, November 1977.

2. Nanodata Corporation, QM-1 Hardware Level User's Manual,
March 1976.

3. Livingston, S. H., History of Manchester Computers,
University of Manchester, 1975.

4, Wulf, W. A., R. L. London, and M. Shaw, Abstraction and
Verification in Alphard: Introduction to Language and
Methodology, Carnegie Mellon University Department of Computer
Science, 1976.

5. Bixler, D. C, SMITE Language Research Final Report, TRW IOC
6413.40-10, October 1975.

6. Shaw, M., W. A. Wulf, and R. L. London, Abstraction and
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Verification in ALPHARD: Defining and Specifying Iteration and
Generators, Comm. ACM 20, 8 (Aug 1977), 553-564.

7. Bixler, D. C, CPDL Requirements, TRW Internal Report, May
19T T

8. Bixler, b, €. and H. M. Bart., GPDL Constructs, TRW Internal
Report, July 1977.

9. Bixler, D. €, and H. M, Hart, CPDL Specification, TRW
Internal Report, Sept 1977.

10. Dahl, 0.-d., E. W. Dijkstra, and €. A. R. Hoare, Structured
Programming, Academic Press, 1972.

11. Early, J., An Efficient Context-Free Parsing Algorithm,
Comm. ACM 13, 2 (Feb. 1970), 94-102.

12. Crocker, S. D., State Deltas: A Formalism for Representing
Segments of a Computation, University of Southern California
Information Sciences Institute, 1977.

13. Newcomer, J. M., Machine Independent Generation of Optimum
Local Code, Carnegie Mellon University Department of Computer
Science, 1975.

14. Fraser, C. W., A Knowledge-Based Code Generator Generator,
ACM Sigplan Notices, August 1977, pp126-129.

1.3 Syntax Notation

Since this study describes the syntax for the extension features
of SMITE, some method of language description is needed to
present the information in a clear, precise fashion. The method
chosen for this study is a loosely formal grammatical notation.

A formal grammar is composed in part of rules or productions.
Each production specifies a textual replacement. By starting
with a chosen initial symbol, which for SMITE is <smite-program>,
and substituting as necessary using the productions, all
legitimate forms of the language may be developed.

Three general classes of symbols appear in productions, namely
terminal symbols, non-terminal symbols, and meta-linguistic
symbols.

B~




Terminal symbols are those characters and character strings
which will actually appear in a SMITE program. Examples of
terminal symbols include REGISTER, MEMORY, and DECLARE, and
the characters ',' and ';'. Any symbol which is not a
non-terminal or meta-linguistic symbol is by default a
terminal symbol.

Non-terminal symbols represent abstract entities in the
program, and will always be written as

<{name>

where "name" is an identifier of the entity. Examples of
non-terminals from SMITE include <declaration> and
{processor>.

Meta-linguistic symbols are those characters used to write |
productions. The characters '<' and '>' are such characters,

and are used to denote non-terminal symbols. The
meta-linguistic symbols in addition to corner brackets in the
study are interpreted as follows:

Brackets '[' and ']' are used to indicate the optional
occurrence of the phrase written within them. For example:

[n’u <id> ]

Additionally,

[<name>]¥*

is used to indicate that any number, including zero, of
occurrences of the phrase may appear. Further,

[<name> ]+

is used to indicate that one or more occurrences may
appear.

The symbol '::=' is used to denote the definition of a
non-terminal. All productions are of the form

{non-terminal> ::= phrase

where <non-terminal> is thereby defined to be "phrase".

The symbol '/' is used to designate alternatives. If
<name> is to be derived to be A or B, the production to
express this would be




<name> ::= A / B

The symbol '"' is used to indicate that a meta-linguistic
symbol or other symbol that could cause confusion 1is being
used as a terminal symbol. Thus

n[ n

is the terminal symbol '[' , and not the beginning of an
optional or repeated phrase.

Parentheses, '(' and ')', are used to group several symbols
into one logical entity to avoid confusion or to reorder
evaluation of meta-symbols in the production. For example:

<name> ::= (SAM / PETE) <type>
There is no hierarchy of meta-symbols. Productions are

evaluated from left to right with symbols within
parentheses evaluated first.

PRy




2.0 Overview and Summary

g Computer description languages provide concise, unambiguous,
specific descriptions of the operation of digital devices. The
functional modularity made possible by MSI, LSI, and VLSI implies
the need for a corresponding descriptive modularity, whereby the
devices composing a digital system may be described along with the
structural information defining their interconnections. This
modularity must be provided, however, without losing sight of the
functionality of the complete system. Contemporary computer
description languages fail to satisfy this requirement.
Specification of modularity and structure is difficult, and obscures
the overall system view. Specification of distributed systems is
virtually impossible.

The addition of the ability to specify abstract devices, similar to
the specification of abstractions or virtual machines in software,
provides a solution to this descriptive problem.

To illustrate the use of the device abstraction and provide examples
of the syntax for defining devices a description of a simple

E computer is first presented in basic SMITE. This computer is the
University of Manchester Mark 1 [3] and the description begins with
the declaration of the memory, registers and subregisters used
within the computer. Following the declarations is a description of
i the instruction fetch, decode and execute cycle.

i MARK-1: PROCESSOR;
DECLARE
M[0:81911<0:31> MEMORY,
PI<0:15> REGISTER,
F<0:2> DEFINED PIK0:2>,
S5<0: 12> DEFINED PI<3a 152,
CR<0: 12> REGISTER,
ACC<0:31> REGISTER;

] DECLARE
STOP EXTERNAL;
DO FOREVER;
BEGIN;
PI <& MICRICOE 15>
CASE F;
vy Q9: branch "

CR <= M[S1<19:31>;




'" 1: branch relative ''
CR <z CR + M[S]<19:31>;
'' 2: load negation '!
ACC <- - M[S];
£y 3> store '
M[S] <- ACC;
Fr 5 subtrack "
ACC <- ACC - M[S];
ACC <- ACC - M[S];
''* 6: skip if negative '!
IF SE(ACC) < 0
THEN CR <= CR + 1;

END IF;
v e hales b
STOP;
END CASE;
CR <= CR + 1;

END;
MARK1: END;

2.1 Abstraction Concepts

A dichotomy exists in the use of single level computer
description languages. If a description is written to accurately
reflect the mechanization of a computer, the functionality may be
completely obscured. Conversely, writing the description to
clearly define the functionality may distort or completely
suppress description of the implementation. For example, the
following excerpt is the description of the floating point
multiplier from a description of the Raytheon Fault Tolerant
Spaceborne Computer: ’
FLOATING-MULTIPLY: PROCESSOR;
FLOATING-PREP;
REG-OP <~ SLL(REG-0OP, 8);
MULTIPLY;
IF REG-OP = 0
THEN REG-OP <- X'80';
ELSE BEGIN;
REG-OP-EXP <- REG-OP-EXP + OPERAND-EXP;
DBL-NORMALIZE;
END;
END IF;
FLOATING-MULTIPLY: END;

The description was written to obtain a bit-accurate emulation of
the computer via compilation of the SMITE computer description to
microcode, and therefore the description is strongly oriented
towards a representation of the computer implementation. The

_.4‘:-, u g . Losansl "




functionality of performing a floating point multiplication is
obscured in the process.

The abstraction concepts proposed by Wulf, London, and Shaw in
Alphard (4] provide a resolution of the
functionality/implementation dichotomy by supporting the
expression of both abstraction and concrete realization. 1In the
context of software, Wulf et al. state:

"A key concept in structured programming is abstraction: the
retention of the essential properties of an object and the
corollary neglect of inessential details. ... Abstraction is
important to structuring programming precisely because it
permits a programmer to ignore inessential detail and thereby
reduce the apparent complexity of his task."

In our terms, abstraction permits the user of a device to ignore
the inessential details of its implementation, using instead the
specified functionality of the device.

The module of abstraction in Alphard is the form, comprised of
parts for specification, representation, and implementation. The
specifications provide at least the names of the functions of the
form together with the types of their arguments and results. The
representation defines the data structures used within the form
to implement the abstraction. The implementation provides the
specific mechanisms to realize the abstract functions. Only the
specifications are visible to users of the form. In this way,
Alphard emphasizes the functionality of the interface between
modules, yet retains the capability to specify concrete
realizations of the functions.

2.2 Abstraction In The Smite Computer Description Language

The primary module of abstraction to be used in SMITE is the
DEVICE, which has structure, use, and concept derived from the
Alphard 'form'. A DEVICE is composed of the following elements:

| 1. A header, which specifies the name, connections, and
sizing parameters of the device.

2. A SPECIFICATIONS section, which describes the
functionality of the device. This specification is presently
given as a prose segment; current research is underway to
replace the prose description with an axiomatic definition of
Y the device function.
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3. A REPRESENTATION section, which defines the static data
base required to implement the device.

4. An IMPLEMENTATION section, which operationally defines the
functions and operations of the device.

The DEVICE extension to SMITE provides a means for both creating
new devices, and extending existing devices. Characteristics may
be inherited from previous devices when an extended device is
being defined.

Abstraction using devices provides a method of describing a
"black-box" and its internal implementation. The user knows
nothing of the device other than the functions it provides, the
inputs it expects, and the outputs it produces. The
implementation of the device knows nothing of its usage except
the connection and sizing specifications provided to the device
when it is instantiated.

To illustrate the use of the DEVICE abstraction the Mark 1
description is rewritten using abstractions to describe
functional boxes within the computer. These boxes are then
connected and the necessary control added. To provide the
example the Mark 1 is artificially decomposed into the structure
shown in Figure 1,

After defining this structure, we specified the function of each
device used to build the complete computer. After functional
specification, we then specified the implementation of the
devices, including internal storage, devices, and data paths.
One method available for specifying the function of a device is
to add a new statement to the language. For example, a new
statement is added by the specification of the PROGRAM-COUNTER
device:

PROGRAM-COUNTER : DEVICE (Y:DEVICE, Z:DEVICE) <W> EXTENDS WORD
§ <= }s
SPECIFICATION

'"A PROGRAM-COUNTER provides internal storage for the
program address register, and mechanisms to load and
increment.'
USES REGISTER;
STATEMENT BUMP;

REPRESENTATION
DECLARE Q <1:W> REGISTER;
IMPLEMENTATION
BUMP: STATEMENT "BUMP A:ID"
WHERE

A: PROGRAM-COUNTER

10




ACCUMULATOR:
REGISTER

M: MASS-MEMORY

GET-INSTRUCTION: |
INSTRUCTION-FETCHER

CR: ' |
PROGRAM-COUNTER ALUER:
A ALU-BOX
JUMPER: Pl:
JUMP-BOX | _INSTRUCTION-REGISTER
-ALU-0P:
REGISTER

DEC: DECODER

STOP-0P:

1\ A

STOPPER:
STOP-BOX
Figure 1
Mark 1
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MEANS
Q.A ¢~ Q.4 + 1
BUMP: END STATEMENT;
PROGRAM-COUNTER: END DEVICE;

The program counter increment function is invoked by the
statement

BUMP A,
where A is a PROGRAM-COUNTER.

Device functions returning information are implemented similarly,
as in the MASS-MEMORY device:

MASS-MEMORY : DEVICE (X:DEVICE, Y:DEVICE, Z:DEVICE) [L] <W>;
SPECIFICATION
'A MASS-MEMORY provides mass storage, associated ports
(mar and mdr) and read/write operations.'’
USES REGISTER, MEMORY;
STATEMENTS MAR, MDRIN;
PRIMITIVE MDROUT;
OPERATORS READ, WRITE;
REPRESENTATION
DECLARE o
MEM[O:L-1] <1:W> MEMORY,
MDR<1:W> REGISTER,
MAR <1:WIDTH(L)> REGISTER;
IMPLEMENTATION
OPERATOR READ
OPERAND A: MASS-MEMORY;
RESULT VALUE: WORD;
VALUE <- MDR.A <- MEM[MAR.AJ].A;
OPERATOR WRITE
OPERAND A: MASS-MEMORY;
RESULT VALUE: WORD;
VALUE <- MEM[MAR.A].A <- MDR.A;
MAR: STATEMENT "MAR A:ID <- B:EXPRESSION"

WHERE

A: MASS-MEMORY; .
MEANS

MAR.A <- B;

MAR: END STATEMENT;
MDROUT: PRIMITIVE "MDROUT A:ID"

WHERE
A: MASS-MEMORY;
RETURNS
VALUE: WORD<1:W.A>;
| MEANS
]
|
‘ 1
12 4




VALUE <- MDR.A;
MDROUT: END PRIMITIVE;
MDRIN: STATEMENT "MDRIN A:ID <- B:EXPRESSION"

WHERE

A: MASS-MEMORY;
MEANS

MDR.A <- B;

MDRIN: END MACRO;
MASS-MEMORY: END DEVICE;

The fetch of data from the memory data register after a read
operation is defined as the primitive MDROUT, allowing the result

of this function to be used as a part of a more complex
operation.

New operators may also be defined for devices, such as in the
INSTRUCTION-REGISTER device:

INSTRUCTION-REGISTER: DEVICE (V:DEVICE, X:DEVICE, Y:DEVICE,
Z:DEVICE) <W> EXTENDS WORD { <- };
SPECIFICATION

'An INSTRUCTION-REGISTER provides local storage for the
current instruction, as well as the means for loading
and fetching various sub-fields.'
, USES REGISTER;
OPERATORS ADDRESS-FIELD, OP-CODE;
REPRESENTATION
DECLARE
IR<1:W> REGISTER,
OP-CODE <0:2> DEFINED IR <1:3>,
ADDRESS <1:W-3> DEFINED IR<KU4:W>; '
IMPLEMENTATION
OPERATOR ADDRESS-FIELD
OPERANDS A: INSTRUCTION-REGISTER;
RESULT VALUE: WORD;
VALUE <- ADDRESS.A;
OPERATOR OP-CODE
OPERANDS A: INSTRUCTION-REGISTER;
OPERATORS VALUE: WORD;
VALUE <- OP-CODE.A;
INSTRUCTION-REGISTER: END DEVICE;

The unary operator ADDRESS-FIELD accepts an INSTRUCTION-REGISTER
type operand, and returns one of its sub-fields as the result.

In general, new operators are defined for unary and binary
functions that return one value. New primitives are defined for
functions that have more than two operands and return only one
value. Statements are created for functions do not fall in the
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previous two categories. The distinction between primitives (or
operators) and statements is similar to the distinction between
functions and subroutines in conventional programming languages.
Statements are invoked only for their effect; primitives may have
side effects, but also return a value.

A DEVICE abstraction describes the functions of the device.
DEVICES are created by declaration of the device with all the
necessary parameters supplied. More than one instance of a
device may be declared. For example:

DECLARE
PCO (A,B) <5> PROGRAM-COUNTER,
PC1 (A,B) <25> PROGRAM-COUNTER,
PC2 (A,B) <16> PROGRAM-COUNTER,
MEMO (C,D,E) [1024] <60> MASS-MEMORY,
MEM1 (C,D,E) [16384] <8> MASS-MEMORY;

One of the advantages of abstraction is that a deviece need only
be specified once. Specific characteristics of the device may be
left unspecified through the use of parameters until an instance
of the device is declared. The use of parameters to permit the
specification of device connections at declaration time is
illustrated by the description of the DECODER device:

DECODER: DEVICE (JMP:JUMP-BOX, ALU:REGISTER, STOP:REGISTER,
IR:INSTRUCTION-REGISTER);
SPECIFICATION
'"The instruction DECODER device decodes the primary Mark
1 op-code into secondary op-codes suitable for execution
by each of the functional boxes. A DECODER expects to
be connected directly into a jump box, op-code registers
for alu box and stop box, and to an instruction
register.’
STATEMENT ENABLE;
IMPLEMENTATION
ENABLE: STATEMENT "ENABLE A:ID"
WHERE
A: DECODER;
MEANS
JMP-OPCODE <- 0;
ALU <- 0;
STOP <= 03
CASE OP-CODE IR;
"JMP" JMP-OPCODE <~ 1;
"RJMP" JMP-OPCODE <- 2;
"LDA" ALU <- 1;
"STA" ALU <- 2;
"SUB" ALU <- 3;
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"SUB" ALU <- 3;
"SKP" JMP-OPCODE <- 3;
WHLT" STOP <~ 1;
END CASE;
DECODE : END STATEMENT;
DECODER: END DEVICE;

The DECODER abstraction only specifies that the device is to be
connected to devices of types JUMP-BOX and REGISTER, and not
which devices. The declaration of the device serves to
instantiate a DECODER and connect it to other devices.

Since the DEVICE abstraction only specifies the types of the
connecting devices, the specification retains flexibility in the
interconnection of devices. Frequently used devices need be
defined and verified only once, and may be declared and connected
in a system as required.

Following are the rest of the devices needed for a description of
the MARK1.

STOP-BOX: DEVICE(OP:REGISTER);
SPECIFICATION
'This device halts the computer. The device expects its
op-code to be in an external register, and has two
operations (halt and no-op).'
USES EXTERNAL;
STATEMENT ENABLE;
IMPLEMENTATION
ENABLE: STATEMENT "ENABLE A:ID";
WHERE
A: STOP-BOX;
MEANS
DECLARE 1
STOP EXTERNAL;
CASE OP.A; i
"NO-OP" NULL;
"HALT" STOP;
END CASE;
STOP: END STATEMENT;
STOP-BOX: END DEVICE;

ALU-BOX: DEVICE (OP:REGISTER, IR:INSTRUCTION-REGISTER,
ANYMEM :MASS-MEMORY, ACC:REGISTER) <W>; '
SPECIFICATION
'This device is an alu functional box with the U4
functions no-op, load accumulator, store accumulator,
and subtract. The device expects its op-code to be in an
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external register. Access to a memory and instruction

register are needed, as is an external accumulator.'

USES REGISTER;

OPERATOR ENABLE;
IMPLEMENTATION

OPERATOR ENABLE

OPERANDS A:ALU-BOX;
RESULT VALUE :WORD;
A CASE OP.A; _
: "NO-OP" VALUE <- UNDEFINED;
"LDA"™ VALUE <- ACC.A <- FETCH-OPERAND;
"STA" STORE-OPERAND(VALUE <- ACC.A);
"SUB" VALUE <- ACC.A <- ACC.A - FETCH-OPERAND;

FETCH-OPERAND: PROCESSORK1:W>; .

MAR ANYMEM <- ADDRESS-FIELD IR;

READ ANYMEM;

FETCH-OPERAND <- MDROUT ANYMEM;

FETCH-OPERAND: END;
STORE-OPERAND PROCESSOR(IN);

DECLARE

IN <1:W> REGISTER;
MAR ANYMEM <- ADDRESS-FIELD IR;
MDRIN ANYMEM <- IN;
WRITE ANYMEM;
STORE-OPERAND: END;
I ALU-BOX: END;

’ JUMP-BOX: DEVICE (PC:PROGRAM-COUNTER, IR:INSTRUCTION-REGISTER,
ANYMEM :MASS-MEMORY, ACC:REGISTER, Z:DEVICE);
SPECIFICATION
'This device provides a jump functional box with 4
functions (no-op, jump, relative jump, and skip if
negative). The device expects to be connected to a
program counter, instruction register, and mass menmory.
It has its own internal op-code register and provides
the outside world a method of loading it. This device
also expects to be connected to an external register
‘ used as an accumulator.'
i USES REGISTER;
f STATEMENT ENABLE, JMP-OPCODE;
REPRESENTATION
DECLARE OP <0:1> REGISTER;
IMPLEMENTATION
ENABLE: STATEMENT "ENABLE A:ID"
WHERE
A: JUMP-BOX;
E MEANS
; CASE OP.A;
P "NO-OP" NULL;
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"JMP" PC <- FETCH-JUMP;
"RJMP" PC <- PC + FETCH-JUMP;
wSKP" IF SE(ACC.A) < O
THEN BUMP PC;
END IF;
END CASE;
ENABLE: END STATEMENT;
FETCH-JUMP: PROCESSOR<1:13>;
DECLARE MEM-WORD <1:32> DATA,
ADDRESS-MASK <1:13> DEFINED MEM-WORD <20:22>;
MAR ANYMEM <- ADDRESS-FIELD IR;
READ ANYMEM;
FETCH-JUMP <- MDROUT ANYMEM.ADDRESS-MASK;
FETCH-JUMP: END;
JMP-OPCODE: STATEMENT "JMP-OPCODE <- A:EXPRESSION"
MEANS
OP <- A;
JMP-OPCODE: END STATEMENT;
JUMP-BOX: END DEVICE;

INSTRUCTION-FETCHER: DEVICE (PC:PROGRAM-COUNTER,
IR:INSTRUCTION-REGISTER, ANYMEM:MASS-MEMORY);

SPECIFICATION
'This device fetches an instruction from memory and

places it in the instruction register. It expects to be
connected to a program counter, instruction register,
and memory.'

STATEMENT ENABLE;

IMPLEMENTATION
ENABLE: STATEMENT "ENABLE A:ID"
WHERE
A: INSTRUCTION-FETCHER
MEANS

DECLARE MEM-WORD <1:32> DATA,
INSTRUCTION-MASK <1:16> DEFINED MEM-WORD
<1:16>;

MAR ANYMEM <- PC;

READ ANYMEM;

IR <- MDROUT ANYMEM.INSTRUCTION-MASK;

ENABLE: END STATEMENT;
INSTRUCTION-FETCHER: END DEVICE;

Having specified all the component devices of the computer, we
then instantiate and connect them together:

DECLARE
PI (JUMPER, GET-INSTRUCTION, DEC, ALUER) <16>
INSTRUCTION-REGISTER,
M (JUMPER, GET-INSTRUCTION, ALUER) [8192] <32> MASS-MEMORY,




CR (GET-INSTRUCTION, JUMPER) <13> PROGRAM-COUNTER;
ACCUMULATOR <0:31> REGISTER,

GET-INSTRUCTION (CR, PI, M) INSTRUCTION-FETCHER,
JUMPER (CR, PI, M, ACCUMULATOR, DEC) JUMP-BOX,
ALU-OP<1:0> REGISTER,

ALUER (ALU-OP, PI, M, ACCUMULATOR) <32> ALU-BOX,
STOP-OP FLAG,

STOPPER(STOP-OP) STOP-BOX,

DEC(JUMPER, ALU-OP, STOP-OP, PI) DECODER;

The declarations specify the connections as parameters to the
devices. For example, the declaration of JUMPER indicates that
the device is.connected to devices CR, PI, DEC, and M, and has
access to the accumulator.

The complete computer is then described operationally using the
interconnected set of devices:

MARK1: PROCESSOR;
USES
INSTRUCTION~-REGISTER, MASS-MEMORY, PROGRAM-COUNTER,
INSTRUCTION~FETCHER, JUMP-BOX, REGISTER, ALU-BOX,
FLAG, STOP-BOX, DECODER;
DECLARE
PI (JUMPER, GET~INSTRUCTION, DEC, ALUER) <16>
INSTRUCTION-REGISTER,
M (JUMPER, GET-INSTRUCTION, ALUER) [8192] <32>
MASS-MEMORY,
CR (GET-INSTRUCTION, JUMPER) <13> PROGRAM-COUNTER;
ACCUMULATOR <0:31> REGISTER,
GET-INSTRUCTION (CR, PI, M) INSTRUCTION-FETCHER,
JUMPER (CR, PI, M, ACCUMULATOR, DEC) JUMP-BOX,
ALU-OP<1:0> REGISTER,
ALUER (ALU-OP, PI, M, ACCUMULATOR) <32> ALU-BOX,
STOP-@P FLAG,
STOPPER(STOP-OP) STOP-BOX,
DEC(JUMPER, ALU-OP, STOP-OP, PI) DECODER;
DO FOREVER;
BEGIN;
ENABLE GET-INSTRUCTION;
ENABLE DEC;
PARALLEL-BEGIN;
ENABLE JUMPER;
ENABLE ALUER;
ENABLE STOPPER;
PARALLEL-END;
BUMP CR;
END;
MARK1: END;
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The description of the Mark 1 itself contains only the top layer
of abstraction which, coupled with the functionality of each
device, provides a functional description of the computer. The
description contains the inter-component connection scheme and
the invocations for control functions.

The next lower level of abstraction provides the complete
description of each device. These lower level descriptions
contain the input/output specification and concrete
implementation of each device. Another, lower level of
abstraction could conceptually be added, in which the actual
hardware items (chips, transistors, etc.) are used to build the
primitive components of the computer.
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] 3.0 Syntax and Semantics

This section contains the detailed syntax and semantics of the
constructs necessary to implement the SMITE extensibility features

discussed in this report and is organized as follows:
1. Overall extensibility description (Section 3.0)
2. DEVICE description (Section 3.1)
3. Syntax Macro description (Section 3.2)

4, Direct code description (Section 3.3)

5. Description of additional constructs needed to implement the
extensibility features (Section 3.4)

The major vehicle of extensibility within SMITE will be the DEVICE.
This mechanism is based on a simplified version of the Alphard
"form" and consists of the following four sections:

1. Header
Specification

Representation

= W

Implementation

The DEVICE capability is used to define a new SMITE data type. Two
constructs are provided to support functions which operate upon the
new type: operator and syntax macro. The operator construct can be
used to define new binary and unary operations on the type. The
compiler automatically provides the mechanism to extend the syntax
it recognizes to implement this construct. If functions other than
this capability supports are needed, syntax macros may be used.
Syntax macros allow user definition of new compiler legal syntax
which significantly increases the flexibility of the definition of
functions to support the new types.
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To efficiently implement areas of common code or provide modularity,
helper processors may be used by either syntax macros or operators.
Helper processors cannot be accessed outside of the DEVICE; however,
they may be indirectly used through syntax macros. Helper
processors are identical to basic SMITE processors with the
following exceptions:

1. They can have the optional inline/closed specification. If
neither is specified, the compiler decides how they are to be
implemented.

2. Helper processors are considered to be within the scope of
the DEVICE for context purposes, but cannot refer either to data
in the representation section or parameters into the DEVICE. 1If
any of these items are needed they must be passed as parameters
into the helper processors.

3. Direct code blocks may appear within a helper processor.
4, The declaration part can contain a DEFAULT declaration.

5. Helper processors may not be nested.

Syntax macros, helper processors and operators are separate and
autonomous entities within the implementation section. Operators or
syntax macros defined within a DEVICE cannot be used by any
operator, syntax macro, or helper processor within the same DEVICE.
This is consistent with the notion of DEVICEs in that the outside
world knows only the abstracted operators and syntax macros passed
out, and the DEVICE knows only of its internal workings and
parameters and operands passed in.

The expansion of operators and syntax macros at compile time is
based on an optional inline/closed indicator. If the indicator does
not appear, the complier makes a decision as how to expand the
entity. No matter how they are actually expanded (inline or closed)
they are treated like closed entities, and all parameters are passed
either CBV or CBVR.

Operators and syntax macros are within the scope of the containing
DEVICE and may refer to any data in the representation section
and/or any formal parameters of the DEVICE. Since an operator or
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syntax macro may have more than one instance of the DEVICE as
parameters, there needs to be a method of qualifying representation
section data items and formal parameters. The problem can be seen
in the following example:

INTEGER:DEVICE<W>;

REPRESENTATION
DECLARE I<K1:W>REGISTER;
IMPLEMENTATION
OPERATOR +
OPERANDS A:INTEGER, B:INTEGER;
RESULT C:INTEGER;

If the operator + is to add the two operands A and B together a
method of specifying the concrete data representations of A and B is
needed. This is because the implementation section can only
manipulate the concrete data, and not the abstract data type

INTEGER. The method of specification is to qualify the concrete data
with a post-qualifier consisting of the operand name. For example
the + operator can be coded as:

: I.C <-I.A + I.B;

In the same manner, the value of the formal parameter W can be
referenced within the operator or syntax macro definition as:

W.A or W.B

This allows reference to the value of the parameter for either
instance of INTEGER.

This type of qualification is needed to refer to any concrete data

representation of a DEVICE where an ambiguity arises as to which

instantiation copy of the concrete data is desired. This ambiguity

can occur where there is more than one parameter of the type of the
1 DEVICE into either an operator or a syntax macro.
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There will be a major division between the extensions provided by
the DEVICE capability and the actual computer descriptions written
in SMITE that use the extensions. DEVICEs will be maintained in a
library to aid in this division and also to remove the need of
repetitively coding the same extensions. Whenever a description is
compiled the compiler needs to be notified where the library resides
(host computer file). The description itself indicates which of the
DEVICEs are needed from the library by way of the USES statement.
The compiler must also provide the ability to create and maintain
the device library.

The direct code capability is provided for by allowing its use
within operators, syntax macros, and helper processors. Direct code
is not allowed in the actual description itself.

3.1 DEVICE

3.1.1 Semantics
1. Header Section

A header is needed to identify the name of the device, an
optional list of parameters for the device, and any
inherited capabilities. The id specified as the device
name is the name which is used as a type in declarations of
instances of the device. This name must be specified in a
USES clause before the new data (device) type (and any
operators, primitives, and statements associated with it)
may be used within a description. This id must not be a
SMITE reserved word prior to declaration of the device, and
becomes a SMITE reserved word within the scope of the
device and any description containing a USES clause naming
it.

The parameters identified in the device header are formal
parameters, and may be used throughout the device
description. They must be matched in type and quantity by
each SMITE declaration using the device name as a data
type.

The parameter list surrounded by parentheses is used to
transmit a list of devices to which this device is
connected. The elements of this list indicate the internal
name and type of each device connected to the device being




described. If a legal connection can be made to several
different entities one of the global types, DEVICE or WORD,
may be used as the connection type indicator. The type
WORD is used for a connection to any base SMITE type or a
user defined device extending WORD, while the type DEVICE
is used for a connection to any user defined device. The
other two types of parameter lists have no pre-defined
meanings, and may be used in any way. However, to conform
to standard SMITE notation, the parameter list surrounded
by wedges should be used to transmit values that have a
width connotation, and the parameter list surrounded by
square brackets should be used to transmit values that have
a length connotation.

An extends clause specifies inherited capabilities of the
new data type. In this way any new data type may build on
a compatible existing data type and there is not a need for
duplication of functions for the new type when the
functions of the existing type will suffice. The source of
the capabilities is the type specified in the clause. If
no capabilities list appears, the new data type inherits
all capabilities that exist for the type. If an inclusion
capabilities list appears, only those capabilities listed
are inherited. If an exclusion capabilities list appears,
only the existing capabilities of the type not listed are
inherited.

At least one data item of the type extended must be
declared in the REPRESENTATION section of the new data type
as a concrete data item. This is to insure that the
inherited capabilities have a data item upon which they can
operate. If more than one data item of the type extended
exists there is a confusion as to which concrete data item
the inherited capabilities are to operate on. This
confusion is solved by preceding the extended type with an
identifier specifying which of the concrete data items is
to be used with inherited operators. For example:

WIDGET: <W> EXTENDS A:REGISTER {+, -1}

REPRESENTATION
DECLARE A<1:W> REGISTER,
COUNTER<O:7> REGISTER,

Whenever the inherited operators + or - are used with

operands of WIDGET the concrete data item A will be the
item operated upon.
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3.

A device trailer must be present to terminate the DEVICE
and it must contain a label identical to the one in the
corresponding device header.

Specification Section

A device description must contain a specification section
which describes the functionality of the device, specifying
everything needed to use the language extensions in the
device, and identifying other devices employed in the
description of the current device.

The specification contains a required text block that can
be used as a prose functional description of the new data
type, and/or the new operators, primitives, and statements.
The prose should include complete descriptions of the
external behavior of all language extensions in the device,
and assumptions or conditions that must hold in using the
extensions in SMITE code. The text block may be replaced
with a formal functional specification of the DEVICE in the
future, if the technology becomes available.

There must be a method of indicating which functions
(syntax macros and operators) described within the DEVICE
are used by the outside world. This is accomplished by
employing a set of lists. Only functions that appear on
these lists may be exported. The operators list identifies
a set of tokens which are operators described in the
DEVICE. The syntax macros list identifies a set of
identifiers which are labels on syntax macros describing
either new statements or new primitives in the DEVICE.

Another list is used to specify all data types needed
within the scope of its definition. This list can appear
in the specification section of a DEVICE and before the
main processor in a SMITE program. By using the optional
pseudo reference mechanism the user may give a data type an
additional pseudo name. This pseudo name can then be used
anywhere the data type is desired. For example:

USES FAST-REGISTER AS REG;
DECLARE A <0:15> REG;

would result in the declaration of data item A of type
FAST-REGISTER.

Representation Section
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A representation section is needed to define the static
data base used in the implementation of the DEVICE. One
copy of this data base is allocated for each SMITE
declaration of the type described by the DEVICE. The data
declared in the representation section may be referenced
and manipulated in the descriptions of the new language
extensions in the DEVICE. The data declared in this
section are not directly accessible by SMITE code outside
the device description (or by helper processors described
within the device); this data may be indirectly accessed by
using the language extensions described in the device.

Implementation Section

An implementation section is needed to contain the concrete
implementations of all operators and Syntax Macros
associated with a DEVICE. These implementations are
realized through manipulation of operands and concrete data
described within the representation section. This section

also contains any helper processors necessary for these
implementations.

An operator definition mechanism must be provided for the
definition of new prefix unary and infix binary operators.
These operators will take on the same precedence as the
base SMITE unary and binary operators respectively. There
must be a method of indicating whether the operator is
implemented as in line or as closed and if this indication
is missing it is to be left up to the compiler to decide.
In all cases, the code associated with the operator is
considered a logical entity and does not interact with any
surrounding code or data items except through the operands
and result mechanism. The operator name listed may
redefine an existing operator or create a new one. This
mechanism also indicates whether the operator is unary or
binary by the presence of one or two operands respectively.

Besides indicating typing information for the operator
implementation, the typing of operands allows the compiler
to perform discrimination between multiple identical
operators which perform different actions for different
operand types. The type(s) of the operand(s) in the actual
operator invocation must be compatible with the types
specified in the operands clause. For example:

OPERATOR +

OPERANDS A:VECTOR,B:VECTOR
and

OPERATOR +
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OPERANDS A:DECIMAL,B:DECIMAL

There is no ambiguity if both +'s are available because the

operand typing requirements need to be met before the
implementation is actually invoked.

To further aid in implementation discrimination, optionally
following the operands clause are any number of attribute
requirements. These are compile time expressions which

must all evaluate to boolean TRUE (in addition to the
operand type checking mentioned above) before the

implementation is invoked. These compile time expressions

may perform functions such as placing restrictions on

the

width of either or both operands. If an ambiguity does
result after all discrimination tests have been met the

compiler reports an error and attempts recovery.

In addition to describing the attributes of the operands, a
method of indicating the shape and attributes of the result
of the operation must also be provided. The result clause

accomplishes this function by listing a data item and
necessary attributes.

The operator clause must also contain the actual code
the implementation of the operator. The value of the
operation is "returned" by storing into the data item
in the result clause somewhere within the actual code
the implementation.

3.1.2 Syntax

<device> ::=
<device-header> <specification-section>
[<representation-section>] <implementation-section>
<device-trailer>

<device-header> :::=

<device-label> DEVICE [<device-parameter-clause)]
[<extends-clause>] ";"

{device-label> ::=
{device-name> ":"

{device-name> ::=
<id>

{device-parameter-clause> ::=
({type-square> [<type-point>] [<type-paren>]) /
(<type-square> [<type-paren>] [(<type-point>]) /

any

for

named
of




(<type-point> [<type-square>] [<type-paren>]) /
(<type-point> [<type-paren>] [<type-square>]) /
(<type-paren> [<type-point>] [<type-square>]) /
(<type-paren> [<type-square>] [<type-point>])
{type-square> ::=

"[(" <element-list> "]"

<element-1list> ::=
<element> ["," <element>]*

<element> ::=
<id>» s did>)

{type-point> ::=
" <element-1list> ">"

{type-paren> ::=
weH <typed-id-1ist> m)u

{typed-id-1list> ::=
<typed-id> ["," <typed-id,]*

{typed-id> ::=
<id> [<type-square>] [<type-point>] [<type-paren>] <type>

{type>::=
" (type-name> [<capability-list>]

{type-name>::=
{base-smite-type> / <device-name> / <pseudo-name> / WORD /
DEVICE

{pseudo-name> ::=
<id>

{capability-list>::=
"{m" ( <exclusion> / <inclusion> ) "}n

<exclusion> ::=
ALLBUT <capability-string>

{capability-string> ::=
<capability-name> [ "," <capability-name>]¥

{capability-named>::=
{operator-name>

<inclusiony i:=
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{capability-string>

<extends-clause> ::=
EXTENDS <typed-id> [<capabilities-list>]

{specification-section> ::=
SPECIFICATION <text-block>
[<operators-1list> /

{statement-macros-list> /
<primitive-macros-list> /
{uses-1list> 1% j

<text-block> ::=
"' <{any-legal-character-except '> "1

<operators-1list> ::=
(OPERATOR / OPERATORS ) [ IS / ARE ] <operator-name> [", K"
{operator-name]#* ";n

<operator-name> ::=
<old-operator> / <new-token>

<old-operator> ::=
<{binaryop> / <unaryop>

<new-token> ::=
any string consisting of legal token characters that is not
an old token

{(statement-macros-1list> ::=
( STATEMENT / STATEMENTS ) [ IS / ARE ] <macro-name> [",6"
{macro-name>] % m",n

<{macro-name> ::=
<id>

<primitive-macros-list> ::=
( PRIMITIVE / PRIMITIVES ) [ IS / ARE ] <macro-name> [","
<{macro-name>]#*% ",n

{uses-list> ::=
USES <uses-element> ["," <uses-element>]* ";n

{uses-element> ::=
{base-smite-type> /
<{device-name> /
{pseudo-reference>

{pseudo-reference> ::=
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<p$eudo-name> AS (<Kdevice-name> / <base-smite-type>)

{representation-section> ::=
REPRESENTATION [<extended-decdriver>] #

{extended-decdriver> ::=
[ DECLARE <extended-decphrase>
[ "," <extended-decphrase>]* ";" ]#%

{extended-decphrase> ::=
{decphrase> / <temporary-declaration>

<implementation-section> ::=
IMPLEMENTATION [<op-def-statement>]#* [<operator-definition>
/ <syntax-macro-definition> / <helper-processor>]#*

<operator-definition> ::=
* [ INLINE / CLOSED ] OPERATOR <operator-name>
<operands-clause> <result-clause> <operator-clause>

{operands-clause> ::=
OPERANDS <typed-id> ["," <typed-id>]
[<attribute-requirement>]%* ";"

{result-clause> ::=
RESULT <typed-id>

{operator-clause> ::=
<extended-decdriver> <operator-body>

{operator-body> ::=
[<statement> / <direct-code~block>]+

<helper-processor> ::=
[ INLINE / CLOSED ] <procheader> <extended-decdriver>
<helper-processor-body> <helper-processer-trailer>

<helper-processor-body> ::=
[<statement> / <direct-code-block>]+

<helper-processor-trailer> ::=
[<label>] END ";"

<device-trailer> ::=
<device-label> ( ENDDEVICE / END DEVICE ) ";"

3.2 Syntax Macro
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i 3.2.1 Semantics

A syntax macro is composed of five parts:
1. HEADER clause

TEMPLATE clause

WHERE clause

=

MEANS clause
5. END clause
3.2.1.1 HEADER clause

R P T T P WP

The HEADER clause contains the label. It must also appear
on the END clause and be identical.

3.2.1.2 TEMPLATE clause

The TEMPLATE clause specifies the syntax of the macro call.
It contains stand alone identifiers and qualified
identifiers. The qualified identifiers are formal
parameters into the syntax macro and will be replaced by
the actual parameters when calls to the syntax macro are
compiled. The parameters to a syntax macro can be one of

1 two syntactic entities: ID or EXPRESSION. The formal
parameters are used throughout the rest of the syntax macro
wherever information or action concerning the parameters is
needed.

The stand alone identifiers are either already SMITE
keywords or they are added to the keywords list. The
keywords in the template clause must be such that the macro
call is unambiguous, when added to the rest of the syntax.

3.2.1.3 WHERE clause

The WHERE clause allows the statement of semantic
requirements levied against the syntax macro parameters.
These requirements must be met for the macro to be
expanded.

The semantic requirements can be broken into two areas:
type requirements and attribute requirements.

Syntax macro parameter type requirements are stated
in a type requirement statement by listing the
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parameter in question followed by the type and an
optional capabilities list. The capabilities list
can explicitly require certain capabilities to either
be present for the actual parameter or strip away
certain capabilities of the actual parameter within
the context of the syntax macro. Using the
capabilities list the user can verify that the
parameters intc the syntax macro support the
operations needed within the syntax macro. They can
also strip away properties, such as transfer, so as
to retain the integrity of the parameter. Using this
type requirement mechanism various syntax macros
consisting of the same keywords can exist and the
type requirements of the parameters can be used to
decide which macro to actually expand for any
speecific eall.

In addition to the capabilities list, the type
requirement statement also allows the user to
label the various attributes a data type can have:
square bracket, angle bracket and parenthesized
attributes. ' This attributes 1list is optional. If
present, it must correspond to the attributes of
the corresponding actual parameter or a subset of
them. This attribute labeling mechanism allows the
syntax macro to refer to the attributes of data
types that are not being created by the specific
form the syntax macro is within.

The attribute requirements consist basically of
compile time expressions. Each requirement is an
expression that is evaluated and all must evaluate to
a true value for the syntax macro to be exparded.
These compile time expressions are composed of the
normal expression entities (such as binary operators,
unary operators, constants).

In addition, the functions WIDTH, LENGTH, MAX and
MIN can be used wherever a constant is allowed.
The parameters of MAX and MIN must also be compile
time expressions while the parameters to WIDTH and
LENGTH can be identifiers. They are also used to
"talk about" the various attributes of the syntax
macro parameters labeled as described above. The
identifiers may need qualification to uniquely
define the data required. A syntax macro
parameter of type EXPRESSION cannot be used as a
parameter to LENGTH. (Note: A data item that was




not defined with a length attribute has a length
of 0).

3.2.1.4 MEANS clause

The MEANS clause actually describes the "meaning" or action
of the syntax macro, It is basically a SMITE processor
minus the PROCESSOR statement and declarations for the
parameters. It can have a declaration part and the
declarations are identical to standard SMITE declarations.

The MEANS clause can contain any standard SMITE statement.
In addition, any syntax macro formal parameter typed ID can
appear anywhere an identifier is legal and any syntax macro
formal parameter typed EXPRESSION can appear in any place
an expression is legal.

When macro expansion occurs, as permitted by the TEMPLATE
and WHERE clauses, the formal parameters within the macro
body (MEANS clause) are replaced with the actual parameters
and that instance of the macro is then ready for the rest
of the compilation process.

3a2.2 Syntax

{syntax-macro-definition> ::=
3 {macro-header-clause> <template-clause> [<where-clause>]
: {<returns-clause>) <means-clause> <end-clause>

{macro-header-clause> ::=
<{macro-label> [ INLINE / CLOSED ] ( STATEMENT / PRIMITIVE )

<{macro-label> ::=
3 {macro-name> ":"

{template-clause> ::=
"' [<template-element>]+ "'"

{template-element> :::=
{token> / <sm-parameter>

<token> ::-=
<old-token> / <new-token>

<old-token> ::=
<old-operator> / <reserved=-word>

{reserved-word> ::=
<old-reserved-word> / <new=reserved-word)




<old=-reserved-word> ::=

AND / BEGIN / CASE / CLOCK / DATA / DEBUG / DECLARE /
DEFAULT / DEFINED / DO / DOWN / ELSE / END / ENDCASE /
ENDIF / ESCAPE / EXTERNAL / FLAG / FOR / FOREVER / IF / IN
/ LIGHT / MEMORY / MICROSECONDS / MILLISECONDS / MS /
NANOSECONDS / NOT / NS / NULL / OR / PARALLEL-BEGIN /
PARALLEL-END / PORT / PROCESSOR / REGISTER / S / SE /
SECONDS # SLA /4 SLC / SLL / SRA £ SRC / SRL / STEP / SWITCH
/ THEN / TO / UNTIL /7 UP /7 US / WHILE

{new-reserved-word> ::=
<{new-device-reserved-word> / <new-sm-reserved-word>

<{new-device-reserved-word> ::=
ALLBUT / ARE / AS / DEVICE / DEVICES / ENDDEVICE / EXTENDS
/ IMPLEMENTATION / IS / OPERANDS / OPERATOR / OPERATORS /

REPRESENTATION / RESULT / SPECIFICATION / USES / WITHIN /
WORD

<{new=-sm-reserved-word> ::=
CLOSED / COPY / DECODE / DIRECT / ENDPRIMITIVE /
ENDSTATEMENT / EXPRESSION / ID / INLINE / LENGTH / MAX /
MEANS / MIN / OPDEF / PRIMITIVE / RETURNS / SMITE /
STATEMENT / TEMPORARY / WHERE / WIDTH

{sm-parameter> ::=
<id> ":" <typer>

<typer> 1=
ID / EXPRESSION

{where-clause> :::=
WHERE <where-list> ";"

<where-1list> ::=
{where-statement> ["," <where-statement>]*%*

<where-statement> ::=
{semantic-requirements>

{semantic-requirements> ::=
{typed-id> / <attribute-requirement>

Cattribute-requirement> ::=
{compile~time-expression>

{returns-clause> ::=
RETURNS <typed-id> ";"
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{means-clause> ::=
MEANS <extended-decdriver> <means-body>

<{means-body> ::=
[<sm-statement> ]+

{(sm=-statement> ::=
{statement> / <direct-code-block>

<end-clause> ::=
<macro-label> ( END ( STATEMENT / PRIMITIVE ) /
ENDSTATEMENT / ENDPRIMITIVE ) ";"

3.3 Direct Code

.3.1 Semantics

A method is needed to declare a SMITE variable used to
communicate between SMITE code and direct code. This is
achieved through the use of the TEMPORARY data type. A
TEMPORARY declaration designates that the declared identifier
is to be maintained in 1, 2, or 4 QM registers (depending on
declared width) throughout the scope of its declaration The
expression indicating the width (in bits) must evaluate to one
of the following numbers: 18, 36, 72. The optional ability to
declare which specific QM registers to actually use is
provided. If the register designation does not appear the
compiler selects an available local store register(s). The
expression used to indicate the specific QM register(s) must
evaluate to a number between O and 31, inclusive.

Although identifiers of type TEMPORARY may be used like other
declared identifiers in SMITE statements, they are the only
SMITE identifiers that may be referenced in direct code, where
they may appear as register designators in microcode
instructions. It will appear to the user that the QM
register(s) associated with a TEMPORARY identifier is not used
in the generation of compiled code within the scope of the
TEMPORARY declaration, other than for references to the
TEMPORARY identifier. However the compiler has the option of
using temporary storage if the register(s) is needed for other
purposes.

A method is needed to notify the compiler of new

microinstructions to be used in direct code. This is
accomplished by using an OPDEF statement which informs the
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SMITE compiler of the format of new microinstructions that are
to be used in direct code and that have been separately
entered into the QM system.

For each new microinstruction the following information is
needed:

e The instruction mnemonic which is used within the
direct code.

2. The instruction op code which indicates where the
instruction resides within the MULTI instruction set.

3. The instruction format type which indicates to the
compiler how to assemble the instruction by indicating the
type and number of operands.

Alternatively, the information needed to define a new
microinstruction may be obtained from a text file maintained
in the host file system. This file is named by the system
file name of a copy clause, and is expected to contain the
image of any number of op def statements.

A direct code block is assumed to be a reducible single-entry,
single-exit "node". Labels declared in microinstruction
statements are known only in the containing direct code block.
SMITE identifiers of type TEMPORARY are the only SMITE
identifiers that may be referenced in microinstructions, and
they may appear anywhere a register is valid in an
instruction. Also, a compile time constant may be used in a
direct code block anywhere a constant is valid as an operand
in a microinstruction.

Because of the difficulty of determining the effect of direct
s code references to absolute and relative addresses, the SMITE
compiler maintains no set/use information over a direct code
block, except for SMITE statements interspersed within the
direct code block.

A microinstruction is a member of the subset of MULTI
microcode instructions, as augmented by the new microcode
instructions introduced by op def statements known within the
scope of the direct code block. TEMPORARY references may be
involved in compile time expressions for reference to
TEMPORARY declarations needing more than one register, in
which case the TEMPORARY reference in direct code designates
the first assigned register. For example:

) DEC A TEMPORARY<36>;




LDMSX A, ... ; references the first register allocated to
A
LDMS A+1,... ; references the second register.

A method of interspersing SMITE statements within a direct
code block is provided. Direct code labels are known around
the interspersed SMITE statements in one direct code block.
Across these SMITE statements, the compiler guarantees

preservation of only those QM registers associated with
TEMPORARY identifiers.

As an alternative decoding method to the CASE statement the
DECODE statement is provided. The primary differences are
that the width of the selector expression does not determine
the number of selected statements, and that the user
determines the method of decoding by providing the decode
algorithm in nanocode which is separately loaded into the QM
system.

When the compiler detects a DECODE statement, the following

"actions occur:

1. generate code to evaluate the expression (selector);

2. verify that the number of statements between DECODE and
END DECODE (selected statements) is equal to the decocde
length (if present);

3. compile all selected statements with a transfer to a

common collecting point (statement after END DECODE) at the
end of each;

4. generate an address table with an entry that points to

the beginning of the compiled code for each selected
statement;

5. encode the MULTI instruction DECODE and indicate the
location of the value of the selector and the beginning of
the statement table by operands to the instruction.

It is up to the user to actually write the nanocode for MULTI
instruction DECODE to decode the selector and transfer to one
of the selected statements indicated in the statement table.
This nanocode could also provide additional actions such as
instruction fetch for the described machine.

The following actions occur when the DECODE statement is
executed:
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1. evaluate selector;
2. execute the MULTI instruction DECODE.

The actual op code value of the DECODE instruction is TBD.

The DECODE statement generates a context block and may be

labeled. If labeled, both labels of the decode-statement
syntax must appear and be identical.

3.3.2 Syntax
{temporary-declaration> ::=
<id> TEMPORARY <temporary-width>
[<temporary~defined-phrase>]

{temporary-width> ::=
"<" <compile-time-expression> ">"

{temporary-defined-phrase> ::=
DEFINED <gm-register-designator>

<gm-register-designator> ::=
{compile-time-expression>

<op-def-statement> ::=
OPDEF <Cop-def-clause> ["," <(op-def-claused>]¥* ";n
<op-def-clause> ::= |
<new-multi-instruction-clause>
| / <copy=-clause>

_“

<{new-multi-instruction-clause> ::= |
{instruction-mnemonic> <instruction-op-code> 3
<{instruction-format-type>

<instruction-mnemonic> ::=
<id>

{instruction-op-code> ::=
{compile-time-expression>

<{instruction-format-type> ::=
a SMITE assembler instruction type

{copy=-clause> ::=
COPY <system-file-name>

f {system-file-name> :::=

1' 3
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a host operating system file name

{direct-code-block> ::=
DIRECT ";" <direct-statement-list> SMITE ";"

{direct-statement-list> ::=
[<direct-statement> ]+

{direct-statement> ::=
<micro-instruction> / <direct-smite-statement>

<{micro-instruction> ::=
[<label>] <micro-operator> <micro-operand-list>
<{micro-comment> ";"

{micro-operator> ::=
<id>

<{micro-operand-list> ::= ;
<micro-operand> [ "," <micro-operand>]¥

<{micro-operand> ::=
<id> / <compile-time-expressicn>

<micro-comment> ::=
[<token>]*

{direct-smite-statement> ::=
"#" <statement>

{decode-statement> ::=
[<decode-length>] <expression> ";"
[<statement> / <nullstatement>]¥
[<label>] (END DECODE/ENDDECODE) ";"

{decode-length> ::=
"[ " <number> n] "

3.4 Additional Changes
Following are the changes to SMITE necessary to implement the
extension features described in previous paragraphs:

1. The SMITE program structure needs to be redefined. Any
number of uses lists may appear before the main processor to
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indicate which DEVICES from the DEVICE library the description
will use.

{smite-program> ::=
| [<uses-list>]* <processor>

2. The addition of compile time expressions. Compile time
expressions are 1dentical to SMITE expressions, with the
exception that they are evaluated at compile time using 2's
complement arithmetic and can be used wherever a constant is
allowed. LENGTH, WIDTH, MIN, and MAX are compile time functions
that are a part of the compile time expression mechanism. The
result of the MAX(MIN) function is the maximum(minimum) value of
the parameters, which must be compile time expressions. The
result of the LENGTH(WIDTH) function is the length(width)
attribute of the parameter which must be an identifier declared
as a data item. A data item that was not defined with a length
attribute has an implied length of zero and can be used as a
parameter to LENGTH. Additionally an expression, which has an
implied width, may be the parameter to WIDTH.

{consatanty ::s
{compile-time-expression>

{compile-time-expression> ::=z
{compile-time-term> [<binaryop> <compile-time-expression>]

{ccmpile-time-term> ::=
[(<unaryop>] <compile-time-factor>

f {compile-time-factor> ::=
I <compile-time-primitive> [ "//" <compile-time-factor>]

{compile-time-primitive> ::=
{compile-time-constant> /
"(" <compile-time-expression> ")"

{compile-time-constant> ::=
<width> / <min> / <max> / <number> / <length>

<wid€th> ::=
WIDTH "(" <qual=id> ")"

<length> :=
LENGTH "(" <qual=id> ")"

Lmin> vz
MIN "(" <param=list> ")"




{max> ::=
MAX "(" <param-list> ")"

{param-1list> ::=
{compile-time-expression> ["," <compile-time-expression>]*

3. A SMITE statement can now be any statement plus any new user
defined statement. The statement macro reference cannot have a
label; i.e., a new statement cannot define a context block.

{(statement> ::=
[<label>] <contextstatement> /
<{notcontextstatement> ";" /

{statement-macro-reference> ";"

{statement-macro-reference> ::=
any reference to a new statement defined by using the
Syntax Macro mechanism

4, A SMITE primitive can now be any primitive, any new user
defined primitive, or a compile-time-expression.

<primitive> {:=
{compile-time-expression> /
<{idprimitive> /
"(" <expression> ")" [<extract>] /
{primitive-macro-reference>

<primitive-macro-reference> ::=
any reference to a new primitive defined by using the
Syntax Macro mechanism

5. The DEVICE extension adds three new attributes to a data type
which are parameters into the DEVICE. These parameters are used
to provide sizing and connection information to the device. To
allow declarations to specify the attributes or parameters, the
following changes are made to the syntactic entity decphrase.

The syntax for declaring new data types is slightly different
than that for declaring base SMITE data types. The
length-declaration is still present to allow the user to declare
arrays of new data items but following that are two of the
optional parameter types into a DEVICE, paren-param and
point-param (in either order). These two optional parameter types
are followed by the new data type name (new-type) and the
optional square-param. The square-param follows the data type
name to avoid confusion with the length-declaration, which was
left in its original location to provide compatibility with
descriptions written in Version 1 SMITE.
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<{decphrase> ::=
{base-type-declr> / <new-type-declr>

{base-type~-declr> :::=z
<id> [<length-declaration>] [<width-declaration>]
[<base-smite-type> / <pseudo-name>] [<defined-phrase>]

<{new-type-declr> ::=
<id> [<length-declaration>] [<new-type-parameters>]
[<new-type>] [<square-param>]

{new-type-parameters> ::=
<point-param> [<paren-param>] /
{paren-param> [<point-param>]

<point-param> ::=
"<" compile-time-expression-list> ">"

{compile-time-expression-list> ::=
<compile-time-expression> [ "," <compile-time-expression>]#

{paren-param> ::=
"(" <id-115t> ")"

<id-1list> ::i=
<id> [ <id> ]

{square=-param> ::=
"(" <compile-time-expression-list> "]"

{new-type> ::=
{device-name> / <pseudo-name>

6. This redefinition of id-primitive is only active within the
IMPLEMENTATION section of a DEVICE.

<id-primitive> ::=
<qual-id> [<reference>]

7. A contextstatement may now also be a DECODE statement.

{contextstatement> ::=
BEGIN <serialcontext> /
IF <ifstmnt> /
DO <dostmnt> /
CASE <casestmnt> /
IN <instmnt> /
PARALLEL-BEGIN <parallelcontext> /
DECODE <decode-statement>
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4.0 Implementation Implications

Parsing syntax macro definitions and their use presents a problem
for predictive parsers - figuring out when to backup could be hard.
The alternative is a reductive parser. An answer might be a
bottom-up reductive parser, which would not be confused by these
constructs. The technology exists on which to base the Advanced
SMITE extensible parser [11] if this approach is taken.

Another possible solution for the parse problem might be a top-down
predictive parser that "carries along" all possible parses of an
entity in parallel while doing the syntactic analysis. In this way
back up need never be performed. When a correct parse path is
discovered the rest of the paths are simply "thrown away". One
consequence of this approach is that the syntactic and semantic
processing within the parser must be completely separate (perhaps
only on a statement by statement basis).

Further discussion about the parser for extensibility showed that
what is needed is context-dependency-resolvable syntactic ambiguity,
not the ability to handle truly ambiguous grammars. E.g., parsing

IN <exp> + <exp>
as a new syntactic entity is not required.

An ambiguity may be created if a syntax macro is defined using words
that already are reserved and no new keywords. Extensions that
cause the language to be ambiguous may be tolerable because the
ambiguous constructs may never be encountered in actual use. Since
there is no way of pre-determining if syntax macro extensions cause
the "new" language to be ambiguous, the best that can be done is to
find the ambiguity in a specific instance, report it and reject the
entity.

There is a general problem with processing aggregate data types.
Since there can be arrays of DEVICEs there is a possibility that
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array specifications may be used recursively (the concrete data
representation may also contain an array). If this is not handled
properly severe object code inefficiency may result.
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5.0 SMITE Application Support Software Requirements

The SMITE Application Support System (SASS) is in many respects a
primitive system. From our experience, it is adequate for the
development, testing, and use of SMITE emulations. However, it
requires a dedicated user to obtain necessary data from the emulator
and perform appropriate conversions and data mappings. Many chores
must be performed manually by the user which could be automated into
SASS. The following paragraphs describe limitations to SASS and our
proposed solution.

5.1 Statement Level Stepping

During emulator checkout, it is desirable to breakpoint the
emulator at selected SMITE statements and to step through the
SMITE program one statement at a time. The user currently has to
add calls to the external STEP routine to force predetermined
breakpoints at SMITE statements. Any additional program steps
must be inserted by examining the microcode produced by the
compiler, and placing a microbreakpoint at the appropriate
location. This is a tedious and error-prone activity, which
presumes the user is familiar with the QM-1 instruction set and
the SMITE code generation sequences.

This process can be automated by allowing SASS to insert
microbreakpoints from a table generated by the compiler which
maps SMITE statements tc emulation addresses. Program stepping
can be performed by using the same table and verify that noc QM-1
branch instructions occurred for the current SMITE statement.

5.2 Symbol Pisplay and Modify

SMITE variables may be stored in main memory or control store and
may occur as subfields of a QM-1 pair of words. To modify or
display SMITE variables, the user must obtain the QM-1 address
and bit positions of the variable from the allocation map. For
modification operations, the user must clear the subfield
reserved for the variable, convert the input data, and insert it
into the subfield. For display operations, the user must extract
the subfield and convert it intc the appropriate display format.

This process could be automated in SASS, using the symbol table
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generated by the compiler. For data modification, the input data
would contain a format indication (e.g.X'FF') and SASS would
convert and store the data. For display operations, an input
would be created which added the variable to the state display
and specified its display format. The symbol table data would
then be used to include the converted symbolic data in the state
display.

5.3 Traps Based on Data Storage

A very valuable debug feature is the capability of trapping when
a particular variable is stored into. This is extremely useful
in determining the conditions which case erroneous emulator
action to occur or errors in the emulator itself.

To accomplish this the compiler must produce a table of addresses
where each variable is changed. From this table, it is easy to
cause the emulator to return control to SASS when a variable is
changed or even when the value falls in a specified range.

.4 SASS Library

SASS contains no generalized I/0 interface. Each emulated I/0
device must be simulated by a new SMITE external and the existing
I/0 simulations are oriented to one specific emulation.

SASS forces the computer description to list all external
statements in a specific sequence or else rewrite the SASS
handler for emulator recall conditions. A desirable solution is
for SASS to call a routine written in SIMPL-Q existing on a
library which has the same name as the external (i.e. the SMITE
external OPSTEP would be processed by a SASS routine OPSTEP).

.5 User Nanocode

If the emulation requires nanocode for new microinstructions used
in direct code or in the DECODE statement, the user must insert
the nanocode on the system cartridge. This obviously limits the
flexibility of the system since all users must coordinate
nanocode additions. The preferred solution is for the user to




specify his nanocode file on disc and have SASS load it into
nanostore, verifying that it is loaded in free nanostore
locations.




6.0 Conclusions and Applications

Abstraction has proven to be a powerful concept for modularizing
software, improving the characteristics of flexibility,
constructibility, maintainability, and reliability in software
systems. The DEVICE abstraction capability in SMITE provides the
same abilities within the hardware description language domain.
DEVICEs allcw the separation of the concepts of functionality from
those of implementation within a description. The improved clarity
and precision of description resulting from this use of abstraction
technology in hardware descriptions has value in many areas. Two
examples of the application of the DEVICE abstraction follow:

6.1 Hardware Security

Computer security describes the theory and practice of
restricting access to information to properly authorized
persons or systems. Work in the field has been concerned with
software and procedures for accomplishing that mission.

Secure operation of the hardware is tacitly assumed. For the
same reasons that correctly specified software requires
verification to demonstrate correct implementation, so does
correctly specified hardware require a similar verification to
demonstrate its correctness.

1 Hardware verification is extremely difficult or impossible
with commonly used technology. Correlation of a prose machine
architecture description to boolean equations or to wire lists
is a2 mammoth effort, and provides little assurance that no
hidden effects can compromise security.

3 A computer description language, when combined with
abstraction concepts, provides a vehicle for partitioning the
verification effort into manageable units, and for
demonstrating equivalence between the hardware and its
specification. A methodology for hardware verification could
1 be based on the following steps, and could be performed during
‘ hardware design and development.

1. Partition the computer into devices. Specify the
function of each device, and describe the register transfer
implementation of the complete computer using these devices
as components.

2. Verify the register transfer implementation of the
computer against the formal functional specification
assuming correct implementation of all devices.
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3. Specify the register transfer implementation of each
device used to construct the computer, and verify each
implementation against its corresponding specification.
Further device partitionings may be required; the
implementation and verification process is repeated until
all devices are completely specified, implemented, and
verified.

4. Each register transfer description must now be realized
in hardware. The hardware implementation is devised for
each device, and is verified for equivalence to the
register transfer implementation specification.

Once this process is complete, the hardware is known to be
equivalent to the overall computer formal specification.
Software and procedures may now be proven to operate correctly
on the hardware using the methods developed by Crocker [12].

Automatic Implementation of Compiler Code Generators

Abstract specification is also useful in the automatic
development of compiler code generators. Work by Newcomer
(13] and Fraser [14] has shown that automated code generator
procduction is feasible given an understanding of the machine
operation. Automation of this understanding, which generally
consists of deriving a set of input/output relations for each
machine instruction, is difficult or impossible when the
relations must be derived from conventional computer
descriptions. The following example illustrates the point.

DECLARE

INTER-CARRY FLAG,

C FLAG,

A <7:0> REGISTER,

B <7:0> REGISTER,

RESULT <7:0> REGISTER;
INTER-CARRY//RESULT<3:0> <= 0//A<3:0> + B<3:0>;
C//RESULT<CT7:4> <- INTER-CARRY + O//A<T:4> + B<T:4>;
IF (RESULT<3:0> > 9) OR INTER-CARRY

THEN RESULT <- RESULT + 6;

ENDIF;

IF (RESULT<7:4> > 9) OR C
THEN RESULT <- RESULT + X'60';
ENDIF;

The example is a specific implementation of a two digit
decimal addition without carry. An automatic code generator
would be required to detect the particular algorithm as being
decimal addition in order to know the function of the

49




instruction, even though that information was known to the
hardware designer. A description using abstraction, however,
allows the designer to express this added information.

DECIMAL : DEVICE <W> EXTENDS WORD { <-,};

SPECIFICATION
'This is a decimal type extension that provides for

the declaration of unsigned decimals w decimal digits

wide. It also provides add and subtract operations
without carry on decimal types of the same width.'
OPERATORS + , - ;
USES REGISTER, FLAG;
REPRESENTATION
DECLARE J <4#*L:1> REGISTER;
IMPLEMENTATION
OPERATOR +
OPERANDS A,B:DECIMAL;
RESULT VALUE:<KWIDTH(A)*4:1> WORD;
DECLARE C FLAG, MASK <4:1> DATA;
VALUE <- 0;
C <~ 0;
DO FOR 1t TO WIDTH(A);
BEGIN
VALUE <- SLL(VALUE,U4) OR
ADD(J.A.MASK,J.B.MASK,C);
J.A <- SRC(J.A,H4);
J.B <- SRC(J.B,4);
END;
OPERATOR -
OPERANDS A,B:DECIMAL;
RESULT VALUE:<WIDTH(A)*4:1> WORD;
DECLARE C FLAG, MASK<4:1> DATA, TEMP <4:1>

REGISTER;
C <= 0;
VALUE <- 0;
DO FOR 1 TO WIDTH(A);
BEGIN;
EF J.B = ©

THEN TEMP <~ 0;
ELSE TEMP <~ B'1010' - J.B.MASK;
ENDIF;
VALUE <~ SLL(RESULT,4) OR ADD(J.A.MASK,
TEMP, C);
J.& <« SRC(J.A,H);
J.B <~ SRC(J.B,lU);
END:
ADD: PROCESSOR <3:0> (INO,IN1,CARRY);
DECLARE INO <3:0> REGISTER, IN1 <3:0> REGISTER,
CARRY FLAG;
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CARRY//ADD <- 0//INO + IN1 + CARRY;
IF CARRY//ADD > 9
CARRY//ADD <- CARRY//ADD + 6;
ENDIF;
ADD:END;
DECIMAL: END DEVICE;

With the abstract device, decimal addition is described as
follows:

DECLARE
A<2> DECIMAL,
B<2> DECIMAL,
RESULT<2> DECIMAL;
RESULT <- A + B;

Using this description, the functionality known to the
designer is specified, and (once a formally recognizable
specification language is invented) may be used directly by an
automatic code generator. The development of automated code
generator producers is greatly simplified by elimination of
the need to recreate that knowledge.

In these two applications, and in others to which abstraction
of hardware specification applies, it is not necessary to
create a complete new device set for each description.
Instead, in the same way that subroutine libraries are
developed and maintained in the software domain, device
catalogs can be created in the hardware domain. Such catalogs
might contain registers and standard ALUs as basic elements.
More complex elements could include associative memories,
floating point units, CPUs, and ccmplete processors.
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APPENDIX A

Working Notes

.0 Analysis of Alphard Technology

This section contains the working notes compiled during the study
of the Alphard 'form' and its application to SMITE. This study
was concerned with the following tasks:

1. Understand the Alphard language and underlying concepts in
full detail.

2. Summarize fundamental concepts and ideas of Alphard,
including analysis of applicability to SMITE.

1.1 Analysis of Extensibility Incorporating Alphard Technology

Preliminary investigations into the question of designing the
syntax and semantics of the SMITE language reveal that a
strong initial approach is to utilize syntax macro and direct
microcode techniques, with related statements grouped into
abstractions using something akin to the Alphard form.
Further, the syntax macro concept reported in TRW 1975 IR&D
31, &g

{statement> :: = IN <expression> <statement>

where this extension augments the operation of the parser, is
a more user-oriented approach than reported in the literature
[6]. Previous syntax macro ideas allow much more detailed user
control (e.g. character scan, etc.), and yet do not seem to
provide benefits valuable to non-compiler-writer users.

A review of the TRW CPDL IR&D effort [7,8,9] to determine
applicability to SMITE and SMITE extensibility shows the
developing syntax and semantics to be workable as a hardware
connection description language. For instance, in CPDL, one
might write

PROCESSOR: processor-2
(other attributes)
SUBSTRUCTURE: (a link to a SMITE description)

This will allow CPDL to provide the necessary connection
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language power for SMITE, and also implies that simplified
requirements (i.e. no attempt to handle connections) may be
levied on SMITE extensibility.
A trial Alphard-like definition of an associative memory is as
follows:
ASSOCIATIVE-MEMORY: DEVICE;
Syntax Specification
<data item> := ID [1] <t> <d> ASSOCIATIVE-MEMORY;
<primitive> := ID [t] <extract>
Representation (Unique)
DECLARE S[1;L] REGISTER,
MWORD <1:t+d> DATA,
MTAG<1:t> DATA,DEFINED MWORD<K1:t>,
3 MDATA<1:d> DATA DEFINED MWORD <t+1:d>,
' I<??7?> REGISTER;
Implementation

<- (ADDRESS, TAG, DATA)
S(ADDRESS]. MTAG <-t;
S[ADDRESS]. MDATA<-d;
or
S[{]<-t//d
Read
Search: DO FOR IC - 1 to 1;
i IF € = SI[I].MTAG
THEN ESCAPE SEARCH;
END IF;
RETURN S[I].MDATA
ASSOCIATIVE-MEMORY: END DEVICE;

The usage might look like
DECLARE MAP[16] <18><32> ASSOCIATIVE-MEMORY;

b For a t<18> d<32> memory of 16 cells.
MAP <- (ADDRESS, TAG, DATA) stores,
--- <- Read(MAP([TAGI]) reads.

It seems all cases of forms (perhaps called a Device in SMITE)

will declare new storage class attributes, in this case

ASSOCIATIVE-MEMORY. We'll also need the capability to change
existing ones - e.g., to re-define existing operators which
are (poorly) defined for REGISTER, PORT, etc.

The section Syntax Specification is poorly integrated into
y everything, and is clearly incomplete as it fails to handle
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the case of store. What is really desired here is an abstract
specification of what an associative memory does. For now, a
text block for narrative description will have to suffice.

Other than certain awkwardness, the representation section has
a problem with the declaration of I - we need to know how many
bits are required in an address (counter) register, which in
this case is equivalent to WIDTH(16)=4.

There is also a problem with the usage section: MAP <-
address, tag, data is poor syntax.

The essential needed concepts shown in this trial seem to be:

1. Group the abstractions/operations for a device
together.

2. Specify the syntax involved.
3. Specify the correct representation.

4. Specify the function performed/the nature of the
device.

5. Specify the implementation of allowed operations.

6. Declaration implies the device (ASSOCIATIVE-MEMORY) is
a storage class attribute.

From reading the material on SIMULA [10] and Alphard [6] the
following observations may be made:

1. The form/class concatenation idea is essential for
reasonably compact use of extensibility.

2. Alphard presents only loop control (iteration - like)
user extensibility - the fundamental loop syntax forms are
fixed. An argument can probably be constructed for SMITE
such that new statements are either disguised function
calls (the degenerate case) or else a syntactic shorthand
for a sequence of SMITE statements. This would imply
fairly severe restrictions on what users could do in the
way of controlling context block creation.

3. Nothing in Alphard considers the problem of
asynchronous control. Advanced SMITE will provide no
capability beyond that of PARALLEL-BEGIN/PARALLEL-END,
although it's clear some tasking primitives such as
synchronization and dispatching are required. For example,
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a small but relatively complete set of operating system
functions could include dispatch, recall, and wait, with
meanings as follows:

dispatch - initiates the execution of a task.

recall - momentarily suspends a task. Re-activation
occurs the next time the scheduler advances to the task.

wait - The task is suspended until a condition is
posted.

A task termination request is also required, as is an
efficient means of terminating tasks at PARALLEL-END to
control when the main line continues and to determine the
continuation set of registers.

There is no current need for control of a task during
execution by another task (e.g., abnormal termination, but
this needs thought relavant to needs for extended ESCAPE
(out of a PROCESSOR).

1.2 The Definition of New Statements

One of the initial issues in SMITE extensibility is the degree
to which new statements may be added to SMITE.

Examination of the published Alphard material [6] indicates
that control-related abstraction in Alphard is solely
concerned with extension of the types of looping constructs
available. Other forms are not discussed - e.g., forms of
CASE-like decoding, interrupt-handling abstractions, abnormal
procedure terminations, etc.

One position would be to take the "extreme-macro" position -
nothing can be introduced into SMITE which could not be built
from the base-language set of control structures. This
approach is more primitive than Alphard generators, even, but
does support useful extensions. For example, a sparse decode
could (laboriously) be represented as:

DECODE opcode;
0'000',0'001',0'002"': =====
0'472',0'702"': ====-
OTHERWISE: -===-

END DECODE;

There would be s requirement to decode, sort, and interpret
' the opcodes at "macro-expansion" time if a transformation to




the emulation-efficient SMITE CASE was desired. Further, it
would not provide any good way to handle the use of don't care
bits in certain opcodes. For example, O'7X3' might mean that
the middle 3 bits could be anything - 0 to 7.

Suppose a common operation structure is to pulse a bus, check
status, and perform cne of three responses. A "nice" way of
writing this might be:

BUS FUNCTION: A

WHEN s1 B,
WHEN s2 C,
WHEN S3, D

OTHERWISE E;

Where s1, s2, s3 are the "well-known" status responses. The
essential restrictions SMITE would impose on such a scheme
would be that they would have to be structured (1 in, 1 out
forms), and have to obey the established restrictions about
ESCAPES past IN, PARALLEL.

The inability to generate new patterns of control is a
restriction needing consideration. For instance, it is
reasonably clear that a "master clear" or even an abort from
deep inside a memory map box causes complete alteration of
control in non-structured ways (although decidedly finite ways
- usually some registers get initialized and interpretation
begins anew). In SMITE this implies the need for ESCAPE to
outside the current processor. Although probably to a
lexically nested point. That form of control structure
extension is not available with macro extensibility.

The ey property (from the standpoint of the compiler) we must
retain is reducibility of control graphs (nesting even). The
entire code generation and optimization structure assumes that
property.

It is not clear that all possible/desirable additions to the
language should be through extensibility. The generality
required to reach that goal might produce a scheme usable only
to its developers.

Further consideration of the associative memory example shows
the following view:

1. We need to add data types and operators.

2. We need to be able to add operators to existing data
types.
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3. We need to be able to add new statements.

It seems that the full power of syntax macros is too
cumbersome for simply adding data types and operators -
instead, the compiler could perform automatic syntax
extension.

It is possible to write an improved version of the associative
memory using the automatic extension syntax idea:

ASSOCIATIVE-MEMORY: DEVICE [1] <t,d>;
Specification
"The associative memory supports the storage and
retrieval of data items by a tag value used as an

address."
Representation
DECLARE
Sfi1:11 REGISTER,
MWORD <1:t+d> DATA,

I<WIDTH(l):1> REGISTER,
Implementation
operator <-
operands address, tag, data : word
returns value : word
value <- sladdress].mtag <- tag;
s[address].mdata <- data;
operator read
operands tag : word
returns value : word
SEARCH: DO FOR I <~ 1 to 1;
I1F € = siIl.mbtag
THEN ESCAPE SEARCH;
END 1IF;
value <- s[I].mtag
ASSOCIATIVE-MEMORY:END DEVICE;

Given the assumption that the first operand for operators on a

subscripted device has to be the address (could use * to

indicate not used), then references would be if the form
DECLARE Y[512]<10,17> ASSOCIATIVE-MEMORY;

Y{1] <= X'3F', IN-PORT;
OUT-PORT <- read(Y[TAG-VALUE]) ;

where the convention is that multiple operands are strung to
the right of an infix operator and are separated by commas.




The example also demonstrates the need for a more primitive

data type in SMITE than REGISTER,

{i.e,., Bit string).

types in SMITE can be defined as extensions of WORD.

example,

etc.
in principle,

Call it the WORD
all the present data
For

Then,

PORT:DEVICE <1lb:ub> EXTENDS WORD;

Specification
register."
Representation

Implementation

operator <-
operands

returns value:

"A PORT is an externally accessible

(none) (But need compile-time ordinal)

word
word

value:

DIRECT;
"setup value in RO"

LD R.ADR,ordinal
SYSTEM USR.RCL+1
SMITE;

PORT: END DEVICE;

and so forth.

We do need some mechanism to deal with devices

which may or may not be subscripted.

1.3 Domain Coupling

e s

variables.

,, FACJ),d,A(J+2))

where

X=A
B=B=2

One of the semantic issues in the definition of extensibility
in SMITE is open or closed procedure insertion.
concern in a purely sequential environment,
expansion can result in a call-by-name effect, but closed
expansion results in an effect determined by the means of
parameter passing chosen, the inline/closed expansion issue is
even more significant in a concurrent execution environment

‘ due to asynchronous coupling of references to shared

The core of the problem is the question of communication and
synchronization between separate execution domains.
ALGOL-like sequential world, where we are passing parameters
via CBN(call-by-name),

PROCEDURE F(A,B,C)

Although of
where inline macro

In an

such as




¥=C

The result after the assignment to Y is that Y holds
identically the value in cell A(J) (J is evaluated before the
call) as does X. What happened during execution may be
visualized as F reaching into the execution domain of the
calling procedure through its parameters to manipulate
variables. Consideration of "thunk" techniques for
implementation of CBN reveals a direct use of the concept:
every time an evaluation of the parameter is made, a call is
executed to a thunk back in the calling domain. The
parameters retain scoping and definition local to the calling
procedure.

The current implementation and definition of SMITE does not
allow this blurring of execution domains. In SMITE,
parameters are passed by call-by-value or
call-by-value-returned. Any alteration of values in the
calling domain is performed only after the called processor
returns control. During execution of the called processor,
parameters are strictly local to the called processor.

Considerations of extensibility and concurrency to be
implemented in Advanced SMITE require us to extend thls
thinking. Consider extensibility first.

1.3.1 Domain Coupling under Extensibility.

The same form textually expanded either in-line or in
closed form, gets different linkages to the calling domain.
With inline expansion, the form is completely merged into
the calling domain - no separate called domain exists.

With closed expansion, a separate called domain is formed.
This effect is unsatisfactory - the method of expansion,
which has only vague analogs in hardware, should not
produce changes in the action invoked.

One possible solution is to mimic the SMITE CBV
(call-by-value) and CBVR (call-by-value-returned) actions
in the expansion of inline processor calls on forms.
Parameters would be restricted to words - that is the
inputs to a function of a form are words. Form parameters
(i.e., when the instance of the form is declared) might not
require that restriction.

The word restriction leads to the issue of coupling
asynchronous domains. Interaction between asynchronous
domains implies synchronization and cooperation - something




implicitly provided in a simplistic manner by parameters.
Rather than overburden a basically simple, desirable
mechanism with a lot of conventions to handle complex
interactions, another alternative is available in the
extension of the PORT concept.

1.3.2 Domain Coupling and Concurrency.

A means of coupling the domains of asynchronous
(concurrent) processes is required. ‘Look at these two
examples: Paged CPU (Figure 2) and PDP-11 (Figure 3).

In the Paged CPU example, all the connections could be
"simple" - i.e., the connection is as simple as some wires,
with no "intelligence" behind it. Synchronization is
embodied in the units - no formal line protocol is
required. Another example would be the connections to an
ALU. (Some implementations of the pager might involve
active intelligence in the pager - for this example imagine
that it is transparent in the sense that the communications
between CPU and P are the same as P and M, or as CPU and M
would be if the system had no pager installed.)

This example can be handled using shared variables and
processor calls where required. Since no active asynchrony
exists, it is well within the capability of what is
foreseen for Advanced SMITE, without the need for the
connection language. For example, in the language
extension, we might write forms for associative memory (as
described earlier) and the pager. The pager form might be
like this:

Pager: DEVICE(al,a2,a3,al : ASSOCIATIVE-MEMORY)
<L
Specification
"The paging device maps memory addresses from the
CPU into physical addresses sent to real memory.
The associative memory used is selected based on
the program status."
Representation
Declare Global A-M-SELECT<KO:1> DEFINED
PSW<20: 21 >;
Implementation
OPERATOR READ
OPERANDS address:word
RETURNS value<lb:ub>:word
CASE A-M-SELECT;
value <- alladdress<0:1>]//address<2:1>
value <- a2[address<0:1>]//address<2:1>
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: value <- a3[address<0:1>]//address<2:1>
value <~ ald[address<0:1>)//address<2:1>
END CASE;

Pager: END DEVICE;

The third form might be a paged memory.

Paged-Memory: DEVICE (p:pager) [1l] <1lb:ub>;
Specification
"Paged memory is essentially the same as normal
memory except that all address references to it
are translated through the pager."
Representation
DECLARE M[0:1-1]<1b:ub>;
Implementation
OPERATOR READ
OPERANDS address: word;
RETURNS value:word;
value <~ M[p(address)];
OPERATOR <-
OPERANDS address, valuein: word;
RETURNS valueout: word;
valueout <- M[p(address)] <- valuein;
Paged-Memory: END DEVICE;

3 The declaration of a CPU becomes clear and simple using
these three forms. There is a loose end with respect to
the GLOBAL in the pager - perhaps it should be forced to be
a parameter to the declaration.

CPU: PROCESSOR;
DECLARE

PSW<0:31> REGISTER,
AM1([41<2,12> ASSOCIATIVE-MEMORY,
AM2[4]1<2,12> ASSOCIATIVE-MEMORY,
AM3[4]<2,12> ASSOCIATIVE-MEMORY,
AMB[4]<2,12> ASSOCIATIVE-MEMORY,
P(AM1,AM2,AM3,AM4)<0: 33> PAGER,
M(P)[0'100000000000'1<0: 31> PAGED-MEMORY;

IR <= READ(M[PCI) ;
PC <- PC+1;

ete.

A means is required to setup arrays of forms - e.g., an
array of associative memories.

The second example, the PDP~11, contains this form of
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connection from FPU-CPU, CPU-UC, UC-M. The connection
language should support description of these passive
connections as well as descriptions like given above. The
PDP-11 also contains active connections, shown with the
heavier lines, which are in fact the unibus.

In the unibus connections, active (intelligent) devices are
connected to each other, and a complete synchronization
protocol exists. Contrast this to the interface of a
processor to a memory, where the interface is simply
request, data lines, and busy/data available. (This
discuyssion is artificial in some senses, since the
differences are not absolute as the terms active and
passive would suggest, but are in fact only of degree).

For "active" connections, the PORT-type of mechanism is
appropriate. A device defined either similarly to a PORT or
even extending PORT could then incorporate both the formal
protocols used over the connection, and the means to
implement on the QM-1. In the PDP-11, a UNIBUS-CONTROLLER
processor, which itself could be a DEVICE in the PDP-11
description would have a DEVICE UNIBUS which would be the
point of contact with the connection language.

1.4 Conclusion

The concept of an extensibility mechanism based on the Alphard
'form' appears to be a viable concept for use within the SMITE
language. Coupled with the use of syntax macros this
mechanism provides a method of defining new data types
(DEVICEs) and the functions necessary to support those data
types. The definition of the new types affords a higher
degree of abstraction than previously available in the SMITE
language.

2.0 Analysis of Syntax Macros in Advanced SMITE

This section contains the working notes compiled during the study
of syntax macros and their use within Advanced SMITE. This study
was concerned with the following tasks:

1. Defining the user accessible grammer, simplified and
restricted from the full grammer accepted by the parser.

2. Determining the necessary constructs required for the
definition of syntax macros.
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3. Determining the mechanism required for the expansion of
syntax macros.

2.1 Introduction

The syntax macro is a method of extension that allows the user
to alter the actual syntax of the language. Since the syntax
macro allows alteration of the syntax of the language the user
must be aware of the base syntax and any additions previously
made when defining any additional changes. For this and other
reasons it has been decided early in this study to use syntax
macros only for changing control structures (statements and
primitives) and to adopt a version of the ALPHARD form
(Device) for creating data and operator extensions. Using the
Device allows the use of an "automatic" syntax extension
mechanism associated with the Device. It is felt that this
decision is appropriate because the Device is powerful enough
and more straight forward in describing data and operator
extensions. For example the syntax macro definition of a stack
type might be:

MACRO "A<ID> STACK [B<CONSTANT>] C<DECTYPE>" EXTENDS
<DECPHRASE>;
MEANS
DECLARE $A[1:B] C, $P <0:35> REGISTER;
MACRO "SIZE-OF A" EXTENDS <IDPRIMITIVE>,

MEANS
$P;
MACRO "A" EXTENDS <IDPRIMITIVE>,
MEANS
HE ESP <=0
THEN ERROR ($P);
ELSE BEGIN;
$A[$PI;
$P <~ $P - 1;
END;
ENDIF;
MACRO "A <- D<KEXPRESSION>" EXTENDS <EXPRESSION>,
MEANS
IF $P > B
THEN ERROR($P);
ELSE BEGIN;
$P <= $P + 1;
$A[$P] <~ D;
END;
ENDIF;
MACRO " ERROR E<PROCCLL>;" EXTENDSKSTATEMENT>,
MEANS

(SOME SORT OF ERROR PROCESSING);
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while the form definiticn might be:

STACK:DEVICE[1l] type EXTENDS WORD;
Specification "The stack type implements the
push and pop stack function and
also allows the user to determine
the current size of the stack"
Representation: DECLARE
SiE el ] TYRE,
P <0:35> REGISTER;
Implementation: -
operator <-
operands
returns < R
IF P > 1 THEN ERROR(P);
ELSE BEGIN;
P <- P+1;
S.[P] <- VALUE;
END
ENDIF;
operator pop
operands
returns L
IF P <= @ THEN ERROR(P):
ELSE BEGIN;
value <~ S([P1;
P K- P - 1;
END;
ENDIF;
operator "SIZE OF"
operands e
returns Y
value <- P;
STACK: END DEVICE;

The form definitiun seems much cleaner and does not force the
user to know the syntactic entities for the extensions.
Therefore the only use for syntax macros will probably be the
extension of control structures.

Syntax macros should be used only to create alternative
definitions for (extend) basic SMITE syntactic entities. They
should not be used to redefine existing syntactic entities,
which would alter the base SMITE language. Alsc, syntax
macros should not be used to create entirely new entities,
which would amount to defining new non-terminals within the
formal definition of the language. The ability to restructure
the base language is definitely not needed to achieve the
goals we have defined for syntax macros.
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The user should not have access to all the compiler syntactic
entities because it would be quite confusing to decide which
entity to actually extend. Therefore, only the syntactic

? entities STATEMENT and PRIMITIVE will be extendable. There is
' no reason to go deeper into the workings of the compiler to
accomplish the capability that syntax macros are to provide.

The information that must now be determined is to which
syntactic entities (non-terminals in the grammer) the user
must have access to allow him to extend the entities STATEMENT

and PRIMITIVE.
2.2 Definition

There must be a method of introducing the syntax macro into
the base language. One idea is that a syntax macro could look
like a declaration and appear any where a declaration may
appear. Another approach is that all the extensions would be
an entity separate from the actual SMITE description and
pre~processed before the actual compilation begins. The
usefulness of a pre-processor for syntax macros is limited by
the amount of semantics present in the syntax macro, which
will also dictate the type of pre-processing that can be done.
In either case the actual definition needs the same basic
items. A method of indicating what the macro call actually
looks like, what syntactic entity the macro expands, the
implementation of the macro in the existing language and any
semantic notions needed to resolve ambiguities caused by the
extension.

It appears that a syntax macro can be used to extend data
types and operators but it would be more useful to use DEVICES
because the user is relieved of the burden of having to
explicitly extend the syntax. He could concentrate on the
DEVICE itself and let the compiler extend the syntax. The use
of the DEVICE in declaring a stack type also seems to be
clearer:

STACK:device [1] extends word;
instead of
macro "A<ID> STACK [B<CONSTANT>] extends <DECPHRASE>";

Also, vsing the DEVICE the user does not have to explicitly
know the syntactic entities that need extension.

Syntax macros however are needed to add new statements. The
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question is how much of the base language syntax need be known
to allow the expression the information required.

Adding semaphores for the synchronization of concurrent

processes is a good example of statements that would be
desirable to add.

Macro "SIGNAL A<SEMAPHORE>;"extends <STATEMENT>,
INTERNAL.A<-INTERNAL.A+1
if INTERNAL.A <= O(direct code to wake up a waiting
process)
macro end;

macro.-"WAIT ACSEMAPHORE>;" extends <STATEMENT>,
INTERNAL.A<-INTERNAL.A-1;
if INTERNAL.A < O(direct code .to suspend a process)
macro end;

and finally:

SEMAPHORE:Device Extends Word;
Declare INTERNAL Register;
semaphore description and semantics;
end device;

Note how the SIGNAL and WAIT statements look almost like
processor calls except without the parenthesis. This is one
of the uses of a syntax macro, allowing the user defined
syntax of "processor calls". It could be left up to the
compiler to decide if the resulting code was in-line or
actually treated as a call.

Processing of syntax macro calls consists of threé operations:
1. Recognizing the macro call
2. Verification of the required semantics
3. Generation of the replacement.

Following is an example of the description of a cache memory
using the concepts introduced and discussed so far.

CACHE-MEMORY:DEVICE [lo:11]<1b:ub>;
SPECIFICATION:
"THIS IS A CACHE MEMORY EXTENSION IN WHICH THE CACHE
IS OF SIZE 8 AND USES THE LIFO METHOD OF SATISFYING
MEMORY ACCESSES"
OPERATORS ARE <-get-value;
MACRO IS IN-CACHE;
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REPRESENTATION:
DECLARE UNIQUE CACHE-ADD([0:7]<0:15>FAST-MEMORY,
CACHE [0:71<1b:ub>FAST-MEMORY,
MEM[1l0:11]<1b:ub>MEMORY,
PNT<0:2>FAST-MEMORY ;
IMPLEMENTATION
OPERATOR <=~ operands a,b:word;
result value:word;
CACHE-ADD[PNT] <~ b;
value <- MEM[b] <- CACHE[PNT] <- a;
PNT <- PNT+1;
OPERATOR get-value operand b:word;
result value:word;
LOOK :BEGIN;
TEMP <~ PNT-1;
DO FOR 0 to T;
IF CACHE-ADD([TEMP]=b THEN
BEGIN;
value <- CACHE[TEMPI];
ESCAPE LOOK;
END;
ENDIF;
value <- CACHE [PNT] <- MEM[b];
CACHE <- ADD[PNT] <- b;
PNT <~ PNT+1;
LOOK:END;
IN-CACHE:MACRQO"AKEXP> IS IN CACHE OF BKID>",;
WHERE
TYPE(B) = CACHE~MEMORY,
TEMPORARY I<0:2> REGISTER;
MEANS
C:BEGIN;
DO FOR I <- 0 TO T;
IF CACHE-ADD[I] =A THEN
BEGIN;
RETURNS 1;
ESCAPE C;
END;
ENDIF;
RETURNS 0;
C:END;
IN-CACHE:END MACRO;

The IN-CACHE extension brings up a problem. The macro needed
an internal ancd unique ID to do the looking through the array
CACHE-ADDR. The needed ID was declared in the representation '

of the device.

¢ A syntax macro should be composed of 3 parts. The first part
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will contain the syntax of the macro call (probably called the
structure clause). The second part will contain any needed
semantics (perhaps the where clause). The third part will
actually describe the implementation of the macro and could be
called the means clause or definition clause. The syntax macro
syntax could look like:

MACRO <structure clause>
WHERE <where clause>
MEANS <means clause>

END MACRO;

The structure clause needs only to specify the syntax of the
macro call i.e.,

MACRO "FOR ALL A<KEXP> IN C<ID>;"

Note also that any context-sensitive requirements are also
specified in the structure and all the parameters (which are
non-terminals in the base language) must be identified by
their non-terminal names. The other tokens that appear in the
structure clause are considered terminals and are addded to
the reserved word list if not already there. No indication
need be made to determine if the macro extends STATEMENT or
PRIMITIVE because in the means clause the existence of a
returns statement (indicating the value to be returned) will
indicate an extension of PRIMITIVE otherwise it is an
extension of STATEMENT. The only non-terminals the user can
use in a syntax macro are ID and EXPRESSION. These entities
appear to be sufficient to allow complete definitions of new
STATEMENTS AND PRIMITIVES.

The where clause of a syntax macro provides the necessary
semantic information. The information consists basically of
specifying particular values for various attributes of the
parameters (non-terminals) of the syntax macro. The
attributes for the non-terminals that need to be accessed are:

ID : width,type (capabilities),length
EXPRESSION:width,type (capabilities)
The where clause must provide a method of specifying the
various requirements on the parameters of the macro. In

addition to the type, there must also be a method of
specifying the further requirement of capabilities, i.e.,




verify that certain operators or functions are defined
concerning the specific type required.

All requirements of the where clause must be met for the
STATEMENT or PRIMITIVE to be considered a legal syntactic
construct, not to mention that the structure clause must be
matched. If the structure clause is met but the where clause
is not met, this does not necessarily mean that the code is
illegal, since there may be another syntax macro which has
requirements the code meets.

The means clause is straightforward. It is merely a
description of the actual implementation of the syntax macro.
The description should be able to use all the constructs of
the base language plus any extensions added.

All parameters into the macro (as defined in the structure
clause) can be used within the means clause anywhere it is
legal to use that syntactic type.

To provide for the syntax macro definition mechanism described
here, the following statements must be added to SMITE:

MACRO - the overall statement for defining syntax macros.
Its parts will consist of the following:

a structure clause which describes the syntax of the
macro call and formal parameters.

a where clause which describes any semantics necessary
to further qualify the macro call.

a means clause which provides the actual implementation
of the macro plus the parameters provided by the
structure and where clauses.

RETURNS - a new construct that is legal only within the
means clause of a syntax macro and signifies that the
syntax macro is actually on extension of PRIMITIVE.
Absence of the RETURNS statement implies that the syntax
macro extends STATEMENT.

The actual call of a syntax macro is handled as follows:

The compiler first deduces that what it is currently
processing is a possible syntax macro. This is achieved by
building parser tables used from the information in the
structure clause. The where clause is then examined and
all requirements are checked. If the test is passed the
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means clause is expanded. The result of the expansion must
then be parsed and if it contains any macro calls, they
will be handled in the same manner. The context of any
expansion must be unique- because the means clause can
contain labels and consequently context blocks.

The syntax macro can be used in two roles. One to add any
constructs necessary to support an abstraction added by a
device. The other role is to add general constructs. In the
latter, there might be a device that ccnsists only of several
syntax macros and no-data or operator abstractions. One
benefit of the former use is to allow the syntax macro to use
constructs local to the device in performing its duty. This
lso brings up the fact that it is necessary for the context
of each instance of an abstraction -described by a device to be
retained so that it can be used by the expansion of a related
syntax macro. In fact, when the expansion of the syntax macro
is performed, the correct context must be found by identifying
which instance of the device the particular call of the syntax
macro is referencing.

Following is a counter extension using syntax macros:

REG-COUNTER :DEVICE <1lb:ub> EXTENDS REGISTER;
SPECIFICATION: "THIS IS A KEGISTER BASE COUNTER™
USES REGISTER;
MACROS ARE INC,DEC;
REPRESENTATION
DECLARE I<1b:ub> REGISTER;
IMPLEMENTATION
INC:MACRO "INC THINGKID>"
WHERE TYPE OF THING IS COUNTER;
MEANS
THING.I <- THING.I + i;
RETURNS THING.I;
INC:ENDMACRO;
DEC:MACRO "DEC Q<ID>"
WHERE TYPE (Q)=COUNTER;
MEANS
Q.I <= Q.1 # 1;
RETURNS Q.I;
DEC :ENDMACRO;
REG-COUNTER : END DEVICE;

Summation macros for registers and vectors could be defined as
follows:

SUMMERS: DEVICE;




SPECIFICATION "THIS DEVICE DEFINES SUMMATION EXTENSION
FOR TYPES REGISTERS AND VECTORS"
MACRQOS ARE SUM-REG, SUM-VEC;
USES REGISTER, VECTOR;
IMPLEMENTATION;
SUM-REG:MACRO '"SUM A<KID> FROM C<KEXPRESSION> TO
D<EXPRESSION>"
WHERE
TYPE(A) = REGISTER,
LENGTH(A) > 0;
MEANS
DECLARE
INDEX <1:MAX(WIDTH(C), WIDTH(D))> REGISTER,
TEMPORARY I<K1:WIDTH(A)> REGISTER;
£ é= O
PO FOR INDEX <= C TO B;
I <= I + A[INDEX];
RETURNS I;
SUM-REG: END MACRO
SUM-VEC : MACRO "SUM AKID> FROM C<KEXP> TO DKEXP>"
WHERE
TYPE (A) = VECTOR,
LENGTH(A) > O
MEANS
DECLARE
INDEX <1:MAX(WIDTH(C), WIDTH(D))>,
TEMPORARY I<K1:WIDTH(A)> VECTOR[SIZE(A)];
I <~ 0;
DO FOR INDEX <- C TO D;
I <~ I + A[INDEX];
RETURNS I;
SUM-VEC: ENDMACRO;
SUMMERS:END DEVICE;

o

The summers could be used as follows:

DECLARE A<0:3>[1:10]REGISTER;
DECLARE V<15:0>[0:31]VECTOR [10];

CASE  SUM A[C] USING C <- FROM 4 to 19;
Q <- B*SUM V[D] USING D <- FROM NEXT-1 TO 31;

The above example some points:

1) There also seems to be a problem in the declaration of
the temporary, I. The width (length) of the type needs to
be known. (Note that the actual value is no problem if a

ZERO function is defined for the type). We may have to go




so far as to indicate the bit ordering and numbering and do
the same for length, i.e.

TEMPORARY ICKLW(A):RW(A)>,
where LW = left width
RW = right width
The following would also be used:
LL : LEFT LENGTH
RL: RIGHT LENGTH

The Means clause appears to be a suitable location for
the declarations of identifiers need by a syntax macro.
In this manner, a device that is used only to provide
syntax macros there need not be any declarations in the
REPRESENTATION clause and therefore that device need not
be DECLARED in the description (other than in the USES
clause).

2) The FOR loop in both summations assumes integral
iteration. If a different type of iteration was desired it
would be necessary to write the MEANS clause using a
different iterator.

3) There is another problem in the declaration of the
temporary for the SUM-VEC syntax macro. It would be
desirable to declare the temporary vector the same size as
the summed vector but "SAME SIZE" doces not seem to be the
correct way to do it, in fact the real problem here is the
method of referring to attributes that are results of
extensions. These attributes can be accessed as described
in 2) above or by referring directly to the parameters of
the device (which will be parameters of the instantiation
of the specific data item in question).

These summation syntax macros bring up another aspect. For
example, suppose that the "+" operator was not closed over the
type VECTOR. This causes no problem because the syntax macro
author would have to know what type of the result of VECTOR
"+" and that would be the type of the source variable. All
users of the VECTOR type must be aware of all ramifications
and interfaces of the type.

If a device is going to use other abstractions it must declare
which abstractions it requires (with the USES statement).




Even the "SUMMERS" device, which is only used to add
statements, must declare any abstractions it needs to support
its internal workings.

No operator or syntax macro defined within a device can be
used elsewhere within the same device. This is logical
because the syntax macro and operator are extensions designed
to work upon the abstraction defined by the device.

The device can also contain helper processors to aid in
definition of the device. These processors are standard SMITE
processors with the exception that they are only defined
within the context of the device.

Any syntax macro that is an extension of statement cannot have
its invocation labeled, i.e.

A: MACRO "SIGNAL A<KID>"

zMéA&S clause does not contain a RETURNS)
A: END MACRO

LABEL: SIGNAL Q;

The label on the SIGNAL statement is illegal because a syntax
macro may not be labeled» Within the syntax macro the author
can create context blocks, but the syntax macro mechanism
itself does not. Also any context blocks created within the
syntax macro cannot be referred to by the calling program.

In the syntax macro WHERE clause the following is to be used
to force any semantic requirement on syntax macro parameters:

MACRO "FOR ALL A<EXP> IN B<ID> INCREMENT®
WHERE B: ASSOCIATIVE-MEMORY,

The above WHERE clause allows the user to declare type and
capability requirements. The WHERE clause can also specify
WIDTH and LENGTH requirements on syntax macro parameters, such
as:
WHERE WIDTH(A) = 4, LENGTH (B) < = 23;
Also the MIN and MAX functions can be used within the WHERE:
WHERE MAX (WIDTH(A), WIDTH(D)) < 26;

The LENGTH function can also be used just to specify the
parameter has the LENGTH attribute:
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WHERE LENGTH(A);
WIDTH, LENGTH, MIN and MAX can all be used in the declarations
of the MEANS clause. They can essentially be thought of as
compile time constants. In fact they can be used anywhere in
the MEANS statement where a constant is appropriate.

Another example of the use of semantic attributes is:

WHERE
A<W1:W2>[L]:VECTOR
MEANS
DECLARE I<1:WIDTH(A)>VECTOR[L]J;

In addition to requiring A to be a vector, the left and right
bit numbers of the parameter and the square bracket attribute
(vector-length) are labeled. The data item I could also be
declared as follows:

DECLARE I<KW1:W2>[L]:VECTOR;
or as
DECLARE I<KA.W1:A.W2>[L]:VECTOR;

If the SUM-VEC syntax macro appeared in the following VECTOR
extension:

VECTOR:DEVICE[1]<lu:rw> EXTENDS WORD;

SPEC "--<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>